Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Int J Mol Sci ; 24(7)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37047181

RESUMO

Unsuccessful wound closure in chronic wounds can be linked to altered keratinocyte activation and their inability to re-epithelize. Suggested mechanisms driving this impairment involve unbalanced cytokine signaling. However, the molecular events leading to these aberrant responses are poorly understood. Among cytokines affecting keratinocyte responses, Transforming Growth Factor-ß (TFG-ß) is thought to have a great impact. In this study, we have used a previously characterized skin epidermal in vitro model, HaCaT cells continuously exposed to TGF-ß1, to study the wound recovery capabilities of chronified/senescent keratinocytes. In this setting, chronified keratinocytes show decreased migration and reduced activation in response to injury. Amniotic membrane (AM) has been used successfully to manage unresponsive complicated wounds. In our in vitro setting, AM treatment of chronified keratinocytes re-enabled migration in the early stages of wound healing, also promoting proliferation at later stages. Interestingly, when checking the gene expression of markers known to be altered in TGF-ß chronified cells and involved in cell cycle regulation, early migratory responses, senescence, and chronic inflammation, we discovered that AM treatment seemed to reset back to keratinocyte status. The analysis of the evolution of both the levels of keratinocyte activation marker cytokeratin 17 and the spatial-temporal expression pattern of the proliferation marker Ki-67 in human in vivo biopsy samples suggests that responses to AM recorded in TGF-ß chronified HaCaT cells would be homologous to those of resident keratinocytes in chronic wounds. All these results provide further evidence that sustained TGF-ß might play a key role in wound chronification and postulate the validity of our TGF-ß chronified HaCaT in vitro model for the study of chronic wound physiology.


Assuntos
Âmnio , Queratinócitos , Humanos , Âmnio/metabolismo , Queratinócitos/metabolismo , Pele/metabolismo , Cicatrização/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Movimento Celular
2.
Biomed Pharmacother ; 175: 116785, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38781869

RESUMO

Rearrangement of the actin cytoskeleton is a prerequisite for carcinoma cells to develop cellular protrusions, which are required for migration, invasion, and metastasis. Fascin is a key protein involved in actin bundling and is expressed in aggressive and invasive carcinomas. Additionally, fascin appears to be involved in tubulin-binding and microtubule rearrangement. Pharmacophoric-based in silico screening was performed to identify compounds with better fascin inhibitory properties than migrastatin, a gold-standard fascin inhibitor. We hypothesized that monastrol displays anti-migratory and anti-invasive properties via fascin blocking in colorectal cancer cell lines. Biophysical (thermofluor and ligand titration followed by fluorescence spectroscopy), biochemical (NMR), and cellular assays (MTT, invasion of human tissue), as well as animal model studies (zebrafish invasion) were performed to characterize the inhibitory effect of monastrol on fascin activity. In silico analysis revealed that monastrol is a potential fascin-binding compound. Biophysical and biochemical assays demonstrated that monastrol binds to fascin and interferes with its actin-bundling activity. Cell culture studies, including a 3D human myoma disc model, showed that monastrol inhibited fascin-driven cytoplasmic protrusions as well as invasion. In silico, confocal microscopy, and immunoprecipitation assays demonstrated that monastrol disrupted fascin-tubulin interactions. These anti-invasive effects were confirmed in vivo. In silico confocal microscopy and immunoprecipitation assays were carried out to test whether monastrol disrupted the fascin-tubulin interaction. This study reports, for the first time, the in vitro and in vivo anti-invasive properties of monastrol in colorectal tumor cells. The number and types of interactions suggest potential binding of monastrol across actin and tubulin sites on fascin, which could be valuable for the development of antitumor therapies.


Assuntos
Proteínas de Transporte , Neoplasias Colorretais , Cinesinas , Proteínas dos Microfilamentos , Invasividade Neoplásica , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas de Transporte/metabolismo , Cinesinas/metabolismo , Cinesinas/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Metástase Neoplásica/prevenção & controle , Pirimidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Tionas/farmacologia , Antineoplásicos/farmacologia
3.
Front Bioeng Biotechnol ; 10: 854845, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35866032

RESUMO

One of the most relevant diabetes complications is impaired wound healing, mainly characterized by reduced peripheral blood flow and diminished neovascularization together with increased inflammation and oxidative stress. Unfortunately, effective therapies are currently lacking. Recently, the amniotic membrane (AM) has shown promising results in wound management. Here, the potential role of AM on endothelial cells isolated from the umbilical cord vein of gestational diabetes-affected women (GD-HUVECs), has been investigated. Indeed, GD-HUVECs in vivo exposed to chronic hyperglycemia during pregnancy compared to control cells (C-HUVECs) have shown molecular modifications of cellular homeostasis ultimately impacting oxidative and nitro-oxidative stress, inflammatory phenotype, nitric oxide (NO) synthesis, and bioavailability, thus representing a useful model for studying the mechanisms potentially supporting the role of AM in chronic non-healing wounds. In this study, the anti-inflammatory properties of AM have been assessed using a monocyte-endothelium interaction assay in cells pre-stimulated with tumor necrosis factor-α (TNF-α) and through vascular adhesion molecule expression and membrane exposure, together with the AM impact on the nuclear factor kappa-light-chain-enhancer of activated B cell (NF-kB) pathway and NO bioavailability. Moreover, GD-HUVEC migration and tube formation ability were evaluated in the presence of AM. The results showed that AM significantly reduced TNF-α-stimulated monocyte-endothelium interaction and the membrane exposure of the endothelial vascular and intracellular adhesion molecules (VCAM-1 and ICAM-1, respectively) in both C- and GD-HUVECs. Strikingly, AM treatment significantly improved vessel formation in GD-HUVECs and cell migration in both C- and GD-HUVECs. These collective results suggest that AM positively affects various critical pathways in inflammation and angiogenesis, thus providing further validation for ongoing clinical trials in diabetic foot ulcers.

4.
Front Bioeng Biotechnol ; 9: 689328, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34295882

RESUMO

The application of amniotic membrane (AM) on chronic wounds has proven very effective at resetting wound healing, particularly in re-epithelialization. Historically, several aspects of AM effect on wound healing have been evaluated using cell models. In keratinocytes, the presence of AM induces the activation of mitogen-activated protein (MAP) kinase and c-Jun N-terminal kinase (JNK) pathways, together with the high expression of c-Jun, an important transcription factor for the progression of the re-epithelialization tongue. In general, the levels of transforming growth factor (TGF)-ß present in a wound are critical for the process of wound healing; they are elevated during the inflammation phase and remain high in some chronic wounds. Interestingly, the presence of AM, through epidermal growth factor (EGF) signaling, produces a fine-tuning of the TGF-ß signaling pathway that re-conducts the stalled process of wound healing. However, the complete suppression of TGF-ß signaling has proven negative for the AM stimulation of migration, suggesting that a minimal amount of TGF-ß signaling is required for proper wound healing. Regarding migration machinery, AM contributes to the dynamics of focal adhesions, producing a high turnover and thus speeding up remodeling. This is clear because proteins, such as Paxillin, are activated upon treatment with AM. On top of this, AM also produces changes in the expression of Paxillin. Although we have made great progress in understanding the effects of AM on chronic wound healing, a long way is still ahead of us to fully comprehend its effects.

5.
Cancers (Basel) ; 13(4)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670655

RESUMO

BACKGROUND: Fascin1 is the key actin-bundling protein involved in cancer invasion and metastasis whose expression is associated with bad prognosis in tumor from different origins. METHODS: In the present study, virtual screening (VS) was performed for the search of Fascin1 inhibitors and RAL, an FDA-approved inhibitor of human immunodeficiency virus-1 (HIV-1) integrase, was identified as a potential Fascin1 inhibitor. Biophysical techniques including nuclear magnetic resonance (NMR) and differential scanning fluorimetry (DSF) were carried out in order to confirm RAL as a Fascin1 blocker. The effect of RAL on actin-bundling activity Fascin1 was assessed by transmission electron microscopy (TEM), immunofluorescence, migration, and invasion assays on two human colorectal adenocarcinoma cell lines: HCT-116 and DLD-1. In addition, the anti-metastatic potential of RAL was in vivo evaluated by using the zebrafish animal model. RESULTS: NMR and DSF confirmed in silico predictions and TEM demonstrated the RAL-induced disorganization of the actin structure compared to control conditions. The protrusion of lamellipodia in cancer cell line overexpressing Fascin1 (HCT-116) was abolished in the presence of this drug. By following the addition of RAL, migration of HCT-116 and DLD-1 cell lines was significantly inhibited. Finally, using endogenous and exogenous models of Fascin1 expression, the invasive capacity of colorectal tumor cells was notably impaired in the presence of RAL in vivo assays; without undesirable cytotoxic effects. CONCLUSION: The current data show the in vitro and in vivo efficacy of the antiretroviral drug RAL in inhibiting human colorectal cancer cells invasion and metastasis in a Fascin1-dependent manner.

6.
Cells ; 9(2)2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-32012802

RESUMO

Chronic wounds are characterized for their incapacity to heal within an expected time frame. Potential mechanisms driving this impairment are poorly understood and current hypotheses point to the development of an unbalanced milieu of growth factor and cytokines. Among them, TGF-ß is considered to promote the broadest spectrum of effects. Although it is known to contribute to healthy skin homeostasis, the highly context-dependent nature of TGF-ß signaling restricts the understanding of its roles in healing and wound chronification. Historically, low TGF-ß levels have been suggested as a pattern in chronic wounds. However, a revision of the available evidence in humans indicates that this could constitute a questionable argument. Thus, in chronic wounds, divergences regarding skin tissue compartments seem to be characterized by elevated TGF-ß levels only in the epidermis. Understanding how this aspect affects keratinocyte activities and their capacity to re-epithelialize might offer an opportunity to gain comprehensive knowledge of the involvement of TGF-ß in chronic wounds. In this review, we compile existing evidence on the roles played by TGF-ß during skin wound healing, with special emphasis on keratinocyte responses. Current limitations and future perspectives of TGF-ß research in chronic wounds are discussed.


Assuntos
Queratinócitos/patologia , Pele/metabolismo , Pele/patologia , Fator de Crescimento Transformador beta/metabolismo , Ferimentos e Lesões/metabolismo , Ferimentos e Lesões/patologia , Animais , Doença Crônica , Humanos , Cicatrização
7.
Cells ; 9(1)2020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31968599

RESUMO

Defects in wound closure can be related to the failure of keratinocytes to re-epithelize. Potential mechanisms driving this impairment comprise unbalanced cytokine signaling, including Transforming Growth Factor-ß (TFG-ß). Although the etiologies of chronic wound development are known, the relevant molecular events are poorly understood. This lack of insight is a consequence of ethical issues, which limit the available evidence to humans. In this work, we have used an in vitro model validated for the study of epidermal physiology and function, the HaCaT cells to provide a description of the impact of sustained exposure to TGF-ß. Long term TGF-ß1 treatment led to evident changes, HaCaT cells became spindle-shaped and increased in size. This phenotype change involved conformational re-arrangements for actin filaments and E-Cadherin cell-adhesion structures. Surprisingly, the signs of consolidated epithelial-to-mesenchymal transition were absent. At the molecular level, modified gene expression and altered protein contents were found. Non-canonical TGF-ß pathway elements did not show relevant changes. However, R-Smads experienced alterations best characterized by decreased Smad3 levels. Functionally, HaCaT cells exposed to TGF-ß1 for long periods showed cell-cycle arrest. Yet, the strength of this restraint weakens the longer the treatment, as revealed when challenged by pro-mitogenic factors. The proposed setting might offer a useful framework for future research on the mechanisms driving wound chronification.


Assuntos
Pontos de Checagem do Ciclo Celular , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Queratinócitos/citologia , Pele/citologia , Fator de Crescimento Transformador beta/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Transição Epitelial-Mesenquimal/genética , Células HaCaT , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Fenótipo , Transdução de Sinais , Proteína Smad3/metabolismo , Transcrição Gênica/efeitos dos fármacos
8.
Exp Mol Med ; 52(2): 281-292, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32080340

RESUMO

Serrated adenocarcinoma (SAC) is more invasive, has worse outcomes than conventional colorectal carcinoma (CRC), and is characterized by frequent resistance to anti-epidermal growth factor receptor (EGFR) and overexpression of fascin1, a key protein in actin bundling that plays a causative role in tumor invasion and is overexpressed in different cancer types with poor prognosis. In silico screening of 9591 compounds, including 2037 approved by the Food and Drug Administration (FDA), was performed, and selected compounds were analyzed for their fascin1 binding affinity by differential scanning fluorescence. The results were compared with migrastatin as a typical fascin1 inhibitor. In silico screening and differential scanning fluorescence yielded the FDA-approved antidepressant imipramine as the most evident potential fascin1 blocker. Biophysical and different in vitro actin-bundling assays confirm this activity. Subsequent assays investigating lamellipodia formation and migration and invasion of colorectal cancer cells in vitro using 3D human tissue demonstrated anti-fascin1 and anti-invasive activities of imipramine. Furthermore, expression profiling suggests the activity of imipramine on the actin cytoskeleton. Moreover, in vivo studies using a zebrafish invasion model showed that imipramine is tolerated, its anti-invasive and antimetastatic activities are dose-dependent, and it is associated with both constitutive and induced fascin1 expression. This is the first study that demonstrates an antitumoral role of imipramine as a fascin1 inhibitor and constitutes a foundation for a molecular targeted therapy for SAC and other fascin1-overexpressing tumors.


Assuntos
Antidepressivos/farmacologia , Proteínas de Transporte/metabolismo , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Imipramina/farmacologia , Proteínas dos Microfilamentos/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Células HT29 , Humanos , Macrolídeos/farmacologia , Invasividade Neoplásica/patologia , Piperidonas/farmacologia , Peixe-Zebra
9.
J Mol Med (Berl) ; 98(3): 383-394, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31996952

RESUMO

Tumor invasion and metastasis involve processes in which actin cytoskeleton rearrangement induced by Fascin1 plays a crucial role. Indeed, Fascin1 has been found overexpressed in tumors with worse prognosis. Migrastatin and its analogues target Fascin1 and inhibit its activity. However, there is need for novel and smaller Fascin1 inhibitors. The aim of this study was to assess the effect of compound G2 in colorectal cancer cell lines and compare it to migrastatin in in vitro and in vivo assays. Molecular modeling, actin-bundling, cell viability, inmunofluorescence, migration, and invasion assays were carried out in order to test anti-migratory and anti-invasive properties of compound G2. In addition, the in vivo effect of compound G2 was evaluated in a zebrafish model of invasion. HCT-116 cells exhibited the highest Fascin1 expression from eight tested colorectal cancer cell lines. Compound G2 showed important inhibitory effects on actin bundling, filopodia formation, migration, and invasion in different cell lines. Moreover, compound G2 treatment resulted in significant reduction of invasion of DLD-1 overexpressing Fascin1 and HCT-116 in zebrafish larvae xenografts; this effect being less evident in Fascin1 known-down HCT-116 cells. This study proves, for the first time, the in vitro and in vivo anti-tumoral activity of compound G2 on colorectal cancer cells and guides to design improved compound G2-based Fascin1 inhibitors. KEY MESSAGES: • Fascin is crucial for tumor invasion and metastasis and is overexpressed in bad prognostic tumors. • Several adverse tumors overexpress Fascin1 and lack targeted therapy. • Anti-fascin G2 is for the first time evaluated in colorectal carcinoma and compared with migrastatin. • Filopodia formation, migration activity, and invasion in vitro and in vivo assays were performed. • G2 blocks actin structures, migration, and invasion of colorectal cancer cells as fascin-dependent.


Assuntos
Antineoplásicos/uso terapêutico , Proteínas de Transporte/antagonistas & inibidores , Neoplasias Colorretais/tratamento farmacológico , Indazóis/uso terapêutico , Proteínas dos Microfilamentos/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Embrião não Mamífero , Humanos , Indazóis/farmacologia , Proteínas dos Microfilamentos/metabolismo , Modelos Moleculares , Invasividade Neoplásica , Peixe-Zebra
10.
J Vis Exp ; (131)2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29364245

RESUMO

Cell migration is a mandatory aspect for wound healing. Creating artificial wounds on research animal models often results in costly and complicated experimental procedures, while potentially lacking in precision. In vitro culture of epithelial cell lines provides a suitable platform for researching the cell migratory behavior in wound healing and the impact of treatments on these cells. The physiology of epithelial cells is often studied in non-confluent conditions; however, this approach may not resemble natural wound healing conditions. Disrupting the epithelium integrity by mechanical means generates a realistic model, but may impede the application of molecular techniques. Consequently, microscopy based techniques are optimal for studying epithelial cell migration in vitro. Here we detail two specific methods, the artificial wound scratch assay and the artificial migration front assay, that can obtain quantitative and qualitative data, respectively, on the migratory performance of epithelial cells.


Assuntos
Ensaios de Migração Celular/instrumentação , Movimento Celular/fisiologia , Células Epiteliais/metabolismo , Queratinócitos/metabolismo , Microscopia/métodos , Ensaios de Migração Celular/métodos , Células Epiteliais/citologia , Humanos , Cicatrização/fisiologia
11.
J Tissue Eng Regen Med ; 12(3): 808-820, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28621502

RESUMO

Keratinocyte migration is a mandatory aspect of wound healing. We have previously shown that amniotic membrane (AM) applied to chronic wounds assists healing through a process resulting in the overexpression of c-Jun at the wound's leading edge. We have also demonstrated that AM modifies the genetic programme induced by transforming growth factor-ß (TGF-ß) in chronic wounds. Here we used a scratch assay of mink lung epithelial cells (Mv1Lu) and a spontaneously immortalized human keratinocyte cell line (HaCaT) cells to examine the influence of AM application on the underlying signalling during scratch closure. AM application induced c-Jun phosphorylation at the leading edge of scratch wounds in a process dependent on MAPK and JNK signalling. Strikingly, when the TGF-ß-dependent Smad-activation inhibitor SB431542 was used together with AM, migration improvement was partially restrained, whereas the addition of TGF-ß had a synergistic effect on the AM-induced cell migration. Moreover, antagonizing TGF-ß with specific antibodies in both cell lines or knocking out TGF-ß receptors in Mv1Lu cells had similar effects on cell migration as using SB431542. Furthermore, we found that AM was able to attenuate TGF-ß-Smad signalling specifically at the migrating edge; AM treatment abated Smad2 and Smad3 nuclear localization in response to TGF-ß in a process dependent on mitogen-activated protein kinase kinase 1 (MEK1) activation but independent of EGF receptor or JNK activation. The involvement of Smad signalling on AM effects on HaCaT keratinocytes was further corroborated by overexpression of either Smad2 or Smad3 and the use of Smad phosphorylation-specific inhibitors, revealing a differential influence on AM-induced migration for each Smad. Thus, AM TGF-ß-Smad signalling abating is essential for optimal cell migration and wound closure.


Assuntos
Âmnio/metabolismo , Movimento Celular , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Humanos , Queratinócitos/citologia , Queratinócitos/metabolismo , Vison , Fosforilação , Proteínas Proto-Oncogênicas c-jun/metabolismo , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Cicatrização
12.
Placenta ; 59: 146-153, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28413063

RESUMO

Wound healing usually follows a predictable sequence and prognosis of events. Its evolutionary process is the result of a complicated interaction between patient-related factors, the wound, the treatment used and the skills and knowledge of the professionals who treat them. Only through a meticulous initial assessment of the wound is it possible to identify the factors that contribute to its complexity. The challenge for professionals will be to implement efficient therapies at the right time and in the most cost-efficient way in order to reduce associated problems, treat the symptoms and expectations of the patients and achieve adequate wound healing whenever possible. This is particularly evident in big chronic wounds with considerable tissue loss, which become senescent in the process of inflammation or proliferation losing the ability to epithelialize. Generally, chronic wounds do not respond to current treatments, therefore they need special interventions. AM is a tissue of particular interest as a biological dressing and it has well-documented reepithelialization effects which are in part related to its capacity to synthesize and release biological active factors. Our studies have demonstrated that amniotic membrane (AM) is able to induce epithelialization in chronic wounds that were unable to epithelialize. AM induces several signaling pathways that are involved in cell migration and/or proliferation. Additionally, AM is able to selectively antagonize the anti-proliferative effect of transforming growth factor-ß (TGF-ß) by modifying the genetic program that TGF-ß induces on keratinocytes. The combined effect of AM on keratinocytes, promoting cell proliferation/migration and antagonizing the effect of TGF-ß is the perfect combination, allowing chronic wounds to move out of their non-healing state and progress into epithelialization.


Assuntos
Âmnio , Curativos Biológicos , Úlcera Cutânea/terapia , Cicatrização , Humanos
13.
PLoS One ; 12(2): e0172574, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28231262

RESUMO

During wound healing, skin function is restored by the action of several cell types that undergo differentiation, migration, proliferation and/or apoptosis. These dynamics are tightly regulated by the evolution of the extra cellular matrix (ECM) contents along the process. Pharmacologically active flavonoids have shown to exhibit useful physiological properties interesting in pathological states. Among them, oleanolic acid (OA), a pentacyclic triterpene, shows promising properties over wound healing, as increased cell migration in vitro and improved wound resolution in vivo. In this paper, we pursued to disclose the molecular mechanisms underlying those effects, by using an in vitro scratch assay in two epithelial cell lines of different linage: non-malignant mink lung epithelial cells, Mv1Lu; and human breast cancer cells, MDA-MB-231. In every case, we observed that OA clearly enhanced cell migration for in vitro scratch closure. This correlated with the stimulation of molecular pathways related to mitogen-activated protein (MAP) kinases, as ERK1,2 and Jun N-terminal kinase (JNK) 1,2 activation and c-Jun phosphorylation. Moreover, MDA-MB-231 cells treated with OA displayed an altered gene expression profile affecting transcription factor genes (c-JUN) as well as proteins involved in migration and ECM dynamics (PAI1), in line with the development of an epithelial to mesenchymal transition (EMT) status. Strikingly, upon OA treatment, we observed changes in the epidermal growth factor receptor (EGFR) subcellular localization, while interfering with its signalling completely prevented migration effects. This data provides a physiological framework supporting the notion that lipophilic plant extracts used in traditional medicine, might modulate wound healing processes in vivo through its OA contents. The molecular implications of these observations are discussed.


Assuntos
Movimento Celular/efeitos dos fármacos , Ativadores de Enzimas/farmacologia , Células Epiteliais/efeitos dos fármacos , Receptores ErbB/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Ácido Oleanólico/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Receptores ErbB/agonistas , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , MAP Quinase Quinase 4/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos
14.
Sci Rep ; 7(1): 15262, 2017 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-29127427

RESUMO

During wound healing, the migration of keratinocytes onto newly restored extracellular matrix aims to reestablish continuity of the epidermis. The application of amniotic membrane (AM) to chronic, deep traumatic, non-healing wounds has proven successful at stimulating re-epithelialization. When applied on epithelial cell cultures, AM activates extracellular signal-regulated kinases 1/2 (ERK1/2) and c-Jun N-terminal kinases 1/2 (JNK1/2), with the overexpression and phosphorylation of c-Jun along the wound edge. The effect of AM on the migration of cells was investigated by studying critical proteins involved in the focal adhesions turn-over: Focal Adhesion Kinase (FAK), Paxillin and Vinculin. In Mv1Lu and HaCaT cells, validated models for cell migration and wound healing, AM affected the expression and activation of Paxillin, but did not affect Vinculin expression, both factors which integrate into focal adhesions. Moreover, AM regulation also affected FAK activity through phosphorylation. Finally, we have determined that AM regulation of focal adhesions involves both JNK and MEK MAP kinase signaling pathways. This data provides a molecular background to understand how AM regulates critical cell and molecular aspects of cell migration, organizing and directing the movement of cells by the continuous formation, maturation, and turnover of focal adhesion structures at the migration leading edge.


Assuntos
Âmnio/química , Movimento Celular , Células Epiteliais/metabolismo , Adesões Focais/metabolismo , Sistema de Sinalização das MAP Quinases , Cicatrização , Animais , Linhagem Celular , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Vison , Paxilina/metabolismo , Vinculina/metabolismo
15.
PLoS One ; 10(12): e0144096, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26630386

RESUMO

Associated liver partition and portal vein ligation for staged hepatectomy (ALPPS) is a two-stage hepatectomy technique which can be associated with a hypertrophic stimulus on the future liver remnant (FLR) stronger than other techniques--such as portal vein ligation (PVL). However, the reason of such hypertrophy is still unclear, but it is suggested that liver transection combined with portal vein ligation (ALPPS) during the first stage of this technique may play a key role. The aim of this study is to compare the hypertrophic stimulus on the FLR and the clinical changes associated with both ALPPS and PVL in a rat surgical model. For this purpose, three groups of SD rats were used, namely ALPPS (n = 30), PVL (n = 30) and sham-treated (n = 30). The second stage of ALPPS (hepatectomy of the atrophic lobes), was performed at day 8. Blood and FLR samples were collected at 1, 24, 48 hours, 8 days and 12 weeks after the surgeries. ALPPS provoked a greater degree of hypertrophy of the FLR than the PVL at 48 hours and 8 days (p<0.05). The molecular pattern was also different, with the highest expression of IL-1ß at 24h, IL-6 at 8 days, and HGF and TNF-α at 48 hours and 8 days (p<0.05). ALPPS also brought about a mild proliferative stimulus at 12 weeks, with a higher expression of HGF and TGF-ß (p<0.05) than PVL. Clinically, ALPPS caused a significant liver damage during the first 48 hours, with a recovery of liver function at day 8. In conclusion, ALPPS seems to induce higher functional hypertrophy on the FLR than PVL at day 8. Such regenerative response seems to be leaded by a complex interaction between pro-mitogenic (IL-6, HGF, TNF-α) and antiproliferative (IL1-ß and TGF-ß) cytokines.


Assuntos
Regeneração Hepática/fisiologia , Fígado/cirurgia , Veia Porta/cirurgia , Animais , Proliferação de Células/fisiologia , Embolização Terapêutica/métodos , Hepatectomia/métodos , Hipertrofia/metabolismo , Hipertrofia/cirurgia , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Ligadura/métodos , Fígado/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/cirurgia , Masculino , Veia Porta/metabolismo , Ratos , Ratos Sprague-Dawley , Fator de Crescimento Transformador beta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Procedimentos Cirúrgicos Vasculares/métodos
16.
PLoS One ; 10(8): e0135324, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26284363

RESUMO

BACKGROUND: Post-traumatic large-surface or deep wounds often cannot progress to reepithelialisation because they become irresponsive in the inflammatory stage, so intervention is necessary to provide the final sealing epidermis. Previously we have shown that Amniotic Membrane (AM) induced a robust epithelialisation in deep traumatic wounds. METHODS AND FINDINGS: To better understand this phenomenon, we used keratinocytes to investigate the effect of AM on chronic wounds. Using keratinocytes, we saw that AM treatment is able to exert an attenuating effect upon Smad2 and Smad3 TGFß-induced phosphorylation while triggering the activation of several MAPK signalling pathways, including ERK and JNK1, 2. This also has a consequence for TGFß-induced regulation on cell cycle control key players CDK1A (p21) and CDK2B (p15). The study of a wider set of TGFß regulated genes showed that the effect of AM was not wide but very concrete for some genes. TGFß exerted a powerful cell cycle arrest; the presence of AM however prevented TGFß-induced cell cycle arrest. Moreover, AM induced a powerful cell migration response that correlates well with the expression of c-Jun protein at the border of the healing assay. Consistently, the treatment with AM of human chronic wounds induced a robust expression of c-Jun at the wound border. CONCLUSIONS: The effect of AM on the modulation of TGFß responses in keratinocytes that favours proliferation together with AM-induced keratinocyte migration is the perfect match that allows chronic wounds to move on from their non-healing state and progress into epithelialization. Our results may explain why the application of AM on chronic wounds is able to promote epithelialisation.


Assuntos
Âmnio/citologia , Proliferação de Células/efeitos dos fármacos , Queratinócitos/citologia , Fator de Crescimento Transformador beta/farmacologia , Cicatrização/fisiologia , Ferimentos Penetrantes/terapia , Âmnio/metabolismo , Animais , Ciclo Celular/efeitos dos fármacos , Células Cultivadas , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Pulmão/citologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Sistema de Sinalização das MAP Quinases , Vison , Fosforilação , Proteínas Proto-Oncogênicas c-jun/metabolismo , Reepitelização , Proteína Smad2/metabolismo , Cicatrização/efeitos dos fármacos , Ferimentos Penetrantes/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA