Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemistry ; : e202400834, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38716700

RESUMO

Ruthenium(II) polypyridyl complexes continue to raise increasing interest for the encouraging results in several biomedical areas. Considering their vast chemical-physical repertoire, in particular the possibility to switch from the sensitization of reactive oxygen species (ROS) to ROS-scavenging abilities by tuning the nature of their ligands, it is therefore surprising that their potential as antioxidants has not been largely investigated so far. Herein, we explored the antioxidant behaviour of the novel ruthenium compound [Ru(dbpy)(2,3-DAN)Cl]PF6 (Ru1), featuring a benzoxazole derivative (dpby=2,6-bis(4-methyl-2-benzoxazolyl)pyridine) and the non-innocent 2,3-diamminonaftalene (2,3-DAN) ligand, along with the reference tpy-containing analogue [Ru(tpy)(2,3-DAN)Cl]PF6 (Ru2) (tpy=2,2':6',2''-terpyridine). Following the synthesis and the electrochemical characterization, chemical antioxidant assays highlighted the beneficial role of dpby for the ROS-scavenging properties of Ru1. These data have been corroborated by the highest protective effect of Ru1 against the oxidative stress induced in SH-SY5Y human neuroblastoma, which exerts pro-survival and anti-inflammatory actions. The results herein reported highlight the potential of Ru1 as pharmacological tool in neurodegenerative diseases and specially prove that the antioxidant properties of such compounds are likely the result of a non-trivial synergetic action involving the bioactive ligands in their chemical architectures.

2.
FASEB J ; 37(8): e23061, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37389926

RESUMO

Endometriosis is a chronic gynecological disease affecting ~10% women in the reproductive age characterized by the growth of endometrial glands and stroma outside the uterine cavity. The inflammatory process has a key role in the initiation and progression of the disorder. Currently, there are no available early diagnostic tests and therapy relies exclusively on symptomatic drugs, so that elucidation of the complex molecular mechanisms involved in the pathogenesis of endometriosis is an unmet need. The signaling of the bioactive sphingolipid sphingosine 1-phosphate (S1P) is deeply dysregulated in endometriosis. S1P modulates a variety of fundamental cellular processes, including inflammation, neo-angiogenesis, and immune responses acting mainly as ligand of a family of G-protein-coupled receptors named S1P receptors (S1PR), S1P1-5 . Here, we demonstrated that the mitogen-activated protein kinase ERK5, that is expressed in endometriotic lesions as determined by quantitative PCR, is activated by S1P in human endometrial stromal cells. S1P-induced ERK5 activation was shown to be triggered by S1P1/3 receptors via a SFK/MEK5-dependent axis. S1P-induced ERK5 activation was, in turn, responsible for the increase of reactive oxygen species and proinflammatory cytokine expression in human endometrial stromal cells. The present findings indicate that the S1P signaling, via ERK5 activation, supports a proinflammatory response in the endometrium and establish the rationale for the exploitation of innovative therapeutic targets for endometriosis.


Assuntos
Endometriose , Humanos , Feminino , Masculino , Espécies Reativas de Oxigênio , Esfingosina , Esfingolipídeos
3.
Am J Obstet Gynecol ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38908653

RESUMO

BACKGROUND: It is estimated that over 2 million cases of fetal death occur worldwide every year, but, despite the high incidence, several basic and clinical characteristics of this disorder are still unclear. Placenta is suggested to play a central role in fetal death. Placenta produces hormones, cytokines and growth factors that modulate functions of the placental-maternal unit. Fetal death has been correlated with impaired secretion of some of these regulatory factors. OBJECTIVE(S): The aim of the present study was to evaluate, in placentas collected from fetal death, the gene expression of inflammatory, proliferative and protective factors. STUDY DESIGN: Cases of fetal death in singleton pregnancy were retrospectively selected, excluding pregnancies complicated by fetal anomalies, gestational diabetes, intrauterine growth restriction and moderate to severe maternal diseases. A group of placentas collected from healthy singleton term pregnancies were used as controls. Groups were compared regarding maternal and gestational age, fetal sex and birth weight. Placental mRNA expression of inflammatory (IL-6), proliferative (Activin A, TGF-ß1) and regulatory (VEGF, VEGFR2, ATP-binding cassette (ABC) transporters ABCB1 and ABCG2, sphingosine 1-phosphate (S1P) signaling pathway) markers was conducted using real-time PCR. Statistical analysis and graphical representation of the data were performed using the GraphPad Prism 5 software. For the statistical analysis, Student's t-test was used, and P values < 0.05 were considered significant. RESULTS: Placental mRNA expression of IL-6 and VEGFR2 resulted significantly higher in the fetal death group compared to controls (P<0.01), while activin A, ABCB1 and ABCG2 expression resulted significantly lower (P<0.01). A significant alteration in the S1P signaling pathway was found in the fetal death group, with an increased expression of the specific receptor isoforms sphingosine 1-phosphate receptor 1, 3 and 4 (S1P1, S1P3, S1P4) and of sphingosine kinase 2 (SK2), one of the enzyme isoforms responsible for S1P synthesis (P<0.01). CONCLUSION: (s): The present study confirmed a significantly increased expression of placental IL-6 and VEGFR2 mRNA, and for the first time showed an increased expression of S1P receptors and SK2 as well as a decreased expression of activin A and of selected ATP-binding cassette transporters, suggesting that multiple inflammatory and protective factors are deranged in placenta of fetal death.

4.
Reprod Biomed Online ; 47(1): 15-25, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37137790

RESUMO

RESEARCH QUESTION: Is the hypusinated form of the eukaryotic translation initiation factor 5A (EIF5A) present in human myometrium, leiomyoma and leiomyosarcoma, and does it regulate cell proliferation and fibrosis? DESIGN: The hypusination status of eIF5A in myometrial and leiomyoma patient-matched tissues was evaluated by immunohistochemistry and Western blotting as well as in leiomyosarcoma tissues by immunohistochemistry. Myometrial, leiomyoma and leiomyosarcoma cell lines were treated with N1-guanyl-1,7-diaminoheptane (GC-7), responsible for the inhibition of the first step of eIF5A hypunization, and the proliferation rate was determined by MTT assay; fibronectin expression was analysed by Western blotting. Finally, expression of fibronectin in leiomyosarcoma tissues was detected by immunohistochemistry. RESULTS: The hypusinated form of eIF5A was present in all tissues examined, with an increasing trend of hypusinated eIF5A levels from normal myometrium to neoplastic benign leiomyoma up to neoplastic malignant leiomyosarcoma. The higher levels in leiomyoma compared with myometrium were confirmed by Western blotting (P = 0.0046). The inhibition of eIF5A hypusination, with GC-7 treatment at 100 nM, reduced the cell proliferation in myometrium (P = 0.0429), leiomyoma (P = 0.0030) and leiomyosarcoma (P = 0.0044) cell lines and reduced the expression of fibronectin in leiomyoma (P = 0.0077) and leiomyosarcoma (P = 0.0280) cells. The immunohistochemical staining of leiomyosarcoma tissue revealed that fibronectin was highly expressed in the malignant aggressive (central) part of the leiomyosarcoma lesion, where hypusinated eIF5A was also highly represented. CONCLUSIONS: These data support the hypothesis that eIF5A may be involved in the pathogenesis of myometrial benign and malignant pathologies.


Assuntos
Leiomioma , Leiomiossarcoma , Neoplasias Uterinas , Feminino , Humanos , Fibronectinas/metabolismo , Leiomiossarcoma/metabolismo , Leiomiossarcoma/patologia , Leiomioma/patologia , Proliferação de Células , Miométrio/metabolismo , Neoplasias Uterinas/patologia , Fator de Iniciação de Tradução Eucariótico 5A
5.
Reprod Biomed Online ; 45(1): 15-18, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35562234

RESUMO

RESEARCH QUESTION: Is sphingosine 1-phosphate (S1P) pathway involved in the process of fibrosis in adenomyosis? DESIGN: RNA was extracted from paraffin-embedded slices collected from the ectopic endometrium of patients with nodular adenomyosis (n = 27) and eutopic endometrium of healthy controls women (n = 29). Expression of genes involved in the metabolism and signalling of S1P, and actin-alpha-2 smooth muscle, encoded by ACTA2 gene, a gene involved in fibrogenesis, was evaluated by real-time polymerase chain reaction analysis. RESULTS: In adenomyotic samples, the expression of sphingosine kinase 1 (SPHK1), the enzyme responsible for the synthesis of S1P, and of S1P phosphatase 2 (SGPP2), the enzyme responsible for the conversion of S1P back to sphingosine, was lower (P = 0.0006; P = 0.0015), whereas that of calcium and integrin-binding protein 1, responsible for membrane translocation of SPHK1, was higher (P = 0.0001) compared with healthy controls. In S1P signalling, a higher expression of S1P receptor S1P3 (P = 0.001), and a lower expression of S1P2 (P = 0.0019) mRNA levels, were found compared with healthy endometrium. In adenomyotic nodules, a higher expression of ACTA2 mRNA levels were observed (P = 0.0001), which correlated with S1P3 levels (P = 0.0138). CONCLUSION: Present data show a profound dysregulation of the S1P signalling axis in adenomyosis. This study also highlights that the bioactive sphingolipid might be involved in the fibrotic tract of the disease, correlated with the expression of ACTA2, suggesting its role as novel potential biomarker of adenomyosis.


Assuntos
Adenomiose , Esfingosina , Adenomiose/genética , Adenomiose/metabolismo , Feminino , Fibrose , Humanos , Lisofosfolipídeos/genética , Lisofosfolipídeos/metabolismo , RNA Mensageiro , Esfingosina/análogos & derivados , Esfingosina/genética , Esfingosina/metabolismo
6.
Int J Mol Sci ; 23(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36232401

RESUMO

The sphingosine 1-phosphate (S1P) and endocannabinoid (ECS) systems comprehend bioactive lipids widely involved in the regulation of similar biological processes. Interactions between S1P and ECS have not been so far investigated in skeletal muscle, where both systems are active. Here, we used murine C2C12 myoblasts to investigate the effects of S1P on ECS elements by qRT-PCR, Western blotting and UHPLC-MS. In addition, the modulation of the mitochondrial membrane potential (ΔΨm), by JC-1 and Mitotracker Red CMX-Ros fluorescent dyes, as well as levels of protein controlling mitochondrial function, along with the oxygen consumption were assessed, by Western blotting and respirometry, respectively, after cell treatment with methanandamide (mAEA) and in the presence of S1P or antagonists to endocannabinoid-binding receptors. S1P induced a significant increase in TRPV1 expression both at mRNA and protein level, while it reduced the protein content of CB2. A dose-dependent effect of mAEA on ΔΨm, mediated by TRPV1, was evidenced; in particular, low doses were responsible for increased ΔΨm, whereas a high dose negatively modulated ΔΨm and cell survival. Moreover, mAEA-induced hyperpolarization was counteracted by S1P. These findings open new dimension to S1P and endocannabinoids cross-talk in skeletal muscle, identifying TRPV1 as a pivotal target.


Assuntos
Endocanabinoides , Corantes Fluorescentes , Animais , Ácidos Araquidônicos , Linhagem Celular , Endocanabinoides/metabolismo , Endocanabinoides/farmacologia , Corantes Fluorescentes/metabolismo , Lisofosfolipídeos/metabolismo , Lisofosfolipídeos/farmacologia , Camundongos , Mitocôndrias/metabolismo , Mioblastos/metabolismo , Alcamidas Poli-Insaturadas , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Esfingosina/farmacologia , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
7.
Int J Mol Sci ; 22(3)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525436

RESUMO

Skeletal muscle atrophy is characterized by a decrease in muscle mass causing reduced agility, increased fatigability and higher risk of bone fractures. Inflammatory cytokines, such as tumor necrosis factor-alpha (TNFα), are strong inducers of skeletal muscle atrophy. The bioactive sphingolipid sphingosine 1-phoshate (S1P) plays an important role in skeletal muscle biology. S1P, generated by the phosphorylation of sphingosine catalyzed by sphingosine kinase (SK1/2), exerts most of its actions through its specific receptors, S1P1-5. Here, we provide experimental evidence that TNFα induces atrophy and autophagy in skeletal muscle C2C12 myotubes, modulating the expression of specific markers and both active and passive membrane electrophysiological properties. NMR-metabolomics provided a clear picture of the deep remodelling of skeletal muscle fibre metabolism induced by TNFα challenge. The cytokine is responsible for the modulation of S1P signalling axis, upregulating mRNA levels of S1P2 and S1P3 and downregulating those of SK2. TNFα increases the phosphorylated form of SK1, readout of its activation. Interestingly, pharmacological inhibition of SK1 and specific antagonism of S1P3 prevented the increase in autophagy markers and the changes in the electrophysiological properties of C2C12 myotubes without affecting metabolic remodelling induced by the cytokine, highlighting the involvement of S1P signalling axis on TNFα-induced atrophy in skeletal muscle.


Assuntos
Lisofosfolipídeos/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Receptores de Esfingosina-1-Fosfato/genética , Esfingosina/análogos & derivados , Fator de Necrose Tumoral alfa/farmacologia , Animais , Diferenciação Celular , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Metabolômica/métodos , Camundongos , Modelos Biológicos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Mioblastos/metabolismo , Mioblastos/patologia , Técnicas de Patch-Clamp , Fosforilação/efeitos dos fármacos , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Transdução de Sinais , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
8.
Int J Mol Sci ; 22(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34445567

RESUMO

S1P is the final product of sphingolipid metabolism, which interacts with five widely expressed GPCRs (S1P1-5). Increasing numbers of studies have indicated the importance of S1P3 in various pathophysiological processes. Recently, we have identified a pepducin (compound KRX-725-II) acting as an S1P3 receptor antagonist. Here, aiming to optimize the activity and selectivity profile of the described compound, we have synthesized a series of derivatives in which Tyr, in position 4, has been substituted with several natural aromatic and unnatural aromatic and non-aromatic amino acids. All the compounds were evaluated for their ability to inhibit vascular relaxation induced by KRX-725 (as S1P3 selective pepducin agonist) and KRX-722 (an S1P1-selective pepducin agonist). Those selective towards S1P3 (compounds V and VII) were also evaluated for their ability to inhibit skeletal muscle fibrosis. Finally, molecular dynamics simulations were performed to derive information on the preferred conformations of selective and unselective antagonists.


Assuntos
Peptídeos Penetradores de Células/farmacologia , Fibrose/tratamento farmacológico , Músculo Esquelético/efeitos dos fármacos , Doenças Musculares/tratamento farmacológico , Mioblastos/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Receptores de Esfingosina-1-Fosfato/antagonistas & inibidores , Animais , Fibrose/metabolismo , Fibrose/patologia , Masculino , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Mioblastos/metabolismo , Mioblastos/patologia , Receptores de Lisoesfingolipídeo
9.
Proc Natl Acad Sci U S A ; 114(10): 2580-2585, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28202724

RESUMO

X-ray structures of homopolymeric L-ferritin obtained by freezing protein crystals at increasing exposure times to a ferrous solution showed the progressive formation of a triiron cluster on the inner cage surface of each subunit. After 60 min exposure, a fully assembled (µ3-oxo)Tris[(µ2-peroxo)(µ2-glutamato-κO:κO')](glutamato-κO)(diaquo)triiron(III) anionic cluster appears in human L-ferritin. Glu60, Glu61, and Glu64 provide the anchoring of the cluster to the protein cage. Glu57 shuttles incoming iron ions toward the cluster. We observed a similar metallocluster in horse spleen L-ferritin, indicating that it represents a common feature of mammalian L-ferritins. The structures suggest a mechanism for iron mineral formation at the protein interface. The functional significance of the observed patch of carboxylate side chains and resulting metallocluster for biomineralization emerges from the lower iron oxidation rate measured in the E60AE61AE64A variant of human L-ferritin, leading to the proposal that the observed metallocluster corresponds to the suggested, but yet unobserved, nucleation site of L-ferritin.


Assuntos
Apoferritinas/química , Ferro/química , Conformação Proteica , Animais , Apoferritinas/metabolismo , Cristalografia por Raios X , Compostos Ferrosos/química , Cavalos/metabolismo , Humanos , Íons/química , Ferro/metabolismo , Cinética , Modelos Moleculares
10.
Biochim Biophys Acta Mol Cell Res ; 1864(5): 814-824, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28188805

RESUMO

Hearing loss affects millions of people in the world. In mammals the auditory system comprises diverse cell types which are terminally differentiated and with no regenerative potential. There is a tremendous research interest aimed at identifying cell therapy based solutions or pharmacological approaches that could be applied therapeutically alongside auditory devices to prevent hair cell and neuron loss. Sphingosine 1-phosphate (S1P) is a pleiotropic bioactive sphingolipid that plays key role in the regulation of many physiological and pathological functions. S1P is intracellularly produced by sphingosine kinase (SK) 1 and SK2 and exerts many of its action consequently to its ligation to S1P specific receptors (S1PR), S1P1-5. In this study, murine auditory neuroblasts named US/VOT-N33 have been used as progenitors of neurons of the spiral ganglion. We demonstrated that the fibroblast growth factor 2 (FGF2)-induced proliferative action was dependent on SK1, SK2 as well as S1P1 and S1P2. Moreover, the pro-survival effect of FGF2 from apoptotic cell death induced by staurosporine treatment was dependent on SK but not on S1PR. Additionally, ERK1/2 and Akt signaling pathways were found to mediate the mitogenic and survival action of FGF2, respectively. Taken together, these findings demonstrate a crucial role for S1P signaling axis in the proliferation and the survival of otic vesicle neuroprogenitors, highlighting the identification of possible novel therapeutical approaches to prevent neuronal degeneration during hearing loss.


Assuntos
Proliferação de Células/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/farmacologia , Lisofosfolipídeos/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Esfingosina/análogos & derivados , Gânglio Espiral da Cóclea/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cóclea/citologia , Cóclea/efeitos dos fármacos , Cóclea/metabolismo , Camundongos , Células-Tronco Neurais/fisiologia , Transdução de Sinais/efeitos dos fármacos , Esfingosina/metabolismo , Gânglio Espiral da Cóclea/citologia , Gânglio Espiral da Cóclea/metabolismo
11.
Int J Mol Sci ; 19(1)2018 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-29300303

RESUMO

Sphingolipids are not only crucial for membrane architecture but act as critical regulators of cell functions. The bioactive sphingolipid ceramide 1-phosphate (C1P), generated by the action of ceramide kinase, has been reported to stimulate cell proliferation, cell migration and to regulate inflammatory responses via activation of different signaling pathways. We have previously shown that skeletal muscle is a tissue target for C1P since the phosphosphingolipid plays a positive role in myoblast proliferation implying a role in muscle regeneration. Skeletal muscle displays strong capacity of regeneration thanks to the presence of quiescent adult stem cells called satellite cells that upon trauma enter into the cell cycle and start proliferating. However, at present, the exact molecular mechanism by which C1P triggers its mitogenic effect in myoblasts is lacking. Here, we report for the first time that C1P stimulates C2C12 myoblast proliferation via lysophosphatidic acid (LPA) signaling axis. Indeed, C1P subsequently to phospholipase A2 activation leads to LPA1 and LPA3 engagement, which in turn drive Akt (protein kinase B) and ERK1/2 (extracellular signal-regulated kinases 1/2) activation, thus stimulating DNA synthesis. The present findings shed new light on the key role of bioactive sphingolipids in skeletal muscle and provide further support to the notion that these pleiotropic molecules might be useful therapeutic targets for skeletal muscle regeneration.


Assuntos
Ceramidas/farmacologia , Lisofosfolipídeos/metabolismo , Mioblastos/citologia , Transdução de Sinais , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Camundongos , Mitógenos/farmacologia , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Fosfolipases A2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Transdução de Sinais/efeitos dos fármacos
12.
J Biol Chem ; 291(49): 25617-25628, 2016 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-27756844

RESUMO

Ferritin molecular cages are marvelous 24-mer supramolecular architectures that enable massive iron storage (>2000 iron atoms) within their inner cavity. This cavity is connected to the outer environment by two channels at C3 and C4 symmetry axes of the assembly. Ferritins can also be exploited as carriers for in vivo imaging and therapeutic applications, owing to their capability to effectively protect synthetic non-endogenous agents within the cage cavity and deliver them to targeted tissue cells without stimulating adverse immune responses. Recently, X-ray crystal structures of Fe2+-loaded ferritins provided important information on the pathways followed by iron ions toward the ferritin cavity and the catalytic centers within the protein. However, the specific mechanisms enabling Fe2+ uptake through wild-type and mutant ferritin channels is largely unknown. To shed light on this question, we report extensive molecular dynamics simulations, site-directed mutagenesis, and kinetic measurements that characterize the transport properties and translocation mechanism of Fe2+ through the two ferritin channels, using the wild-type bullfrog Rana catesbeiana H' protein and some of its variants as case studies. We describe the structural features that determine Fe2+ translocation with atomistic detail, and we propose a putative mechanism for Fe2+ transport through the channel at the C3 symmetry axis, which is the only iron-permeable channel in vertebrate ferritins. Our findings have important implications for understanding how ion permeation occurs, and further how it may be controlled via purposely engineered channels for novel biomedical applications based on ferritin.


Assuntos
Proteínas de Anfíbios/química , Ferritinas/química , Ferro/química , Proteínas de Anfíbios/genética , Proteínas de Anfíbios/metabolismo , Animais , Cristalografia por Raios X , Ferritinas/genética , Ferritinas/metabolismo , Ferro/metabolismo , Domínios Proteicos , Rana catesbeiana
13.
Chemistry ; 23(41): 9879-9887, 2017 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-28489257

RESUMO

Ferritin is a ubiquitous nanocage protein, which can accommodate up to thousands of iron atoms inside its cavity. Aside from its iron storage function, a new role as a fatty acid binder has been proposed for this protein. The interaction of apo horse spleen ferritin (HoSF) with a variety of lipids has been here investigated through NMR spectroscopic ligand-based experiments, to provide new insights into the mechanism of ferritin-lipid interactions, and the link with iron mineralization. 1D 1 H, diffusion (DOSY) and saturation-transfer difference (STD) NMR experiments provided evidence for a stronger interaction of ferritin with unsaturated fatty acids compared to saturated fatty acids, detergents, and bile acids. Mineralization assays showed that oleate c aused the most efficient increase in the initial rate of iron oxidation, and the highest formation of ferric species in HoSF. The comprehension of the factors inducing a faster biomineralization is an issue of the utmost importance, given the association of ferritin levels with metabolic syndromes, such as insulin resistance and diabetes, characterized by fatty acid concentration dysregulation. The human ferritin H-chain homopolymer (HuHF), featuring ferroxidase activity, was also tested for its fatty acid binding capabilities. Assays show that oleate can bind with high affinity to HuHF, without altering the reaction rates at the ferroxidase site.


Assuntos
Ácidos Graxos Insaturados/química , Ferritinas/química , Ferro/metabolismo , Animais , Apoproteínas/química , Apoproteínas/metabolismo , Ceruloplasmina/química , Ceruloplasmina/metabolismo , Cromatografia em Gel , Dicroísmo Circular , Difusão Dinâmica da Luz , Ferritinas/metabolismo , Cavalos , Humanos , Ferro/química , Ligantes , Espectroscopia de Ressonância Magnética , Concentração Osmolar , Ligação Proteica
14.
Biochim Biophys Acta ; 1854(9): 1118-22, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25727028

RESUMO

Ferritin is a ubiquitous iron concentrating nanocage protein that functions through the enzymatic oxidation of ferrous iron and the reversible synthesis of a caged ferric-oxo biomineral. Among vertebrate ferritins, the bullfrog M homopolymer ferritin is a frequent model for analyzing the role of specific amino acids in the enzymatic reaction and translocation of iron species within the protein cage. X-ray crystal structures of ferritin in the presence of metal ions have revealed His54 binding to iron(II) and other divalent cations, with its imidazole ring proposed as "gate" that influences iron movement to/from the active site. To investigate its role, His54 was mutated to Ala. The H54A ferritin variant was expressed and its reactivity studied via UV-vis stopped-flow kinetics. The H54A variant exhibited a 20% increase in the initial reaction rate of formation of ferric products with 2 or 4 Fe²âº/subunit and higher than 200% with 20 Fe²âº/subunit. The possible meaning of the increased efficiency of the ferritin reaction induced by this mutation is proposed taking advantage of the comparative sequence analysis of other ferritins. The data here reported are consistent with a role for His54 as a metal ion trap that maintains the correct levels of access of iron to the active site. This article is part of a Special Issue entitled: Cofactor-dependent proteins: evolution, chemical diversity and bio-applications.


Assuntos
Ceruloplasmina/química , Ferritinas/química , Sítios de Ligação , Cristalografia por Raios X , Histidina/química , Histidina/metabolismo , Ferro/química
15.
Biochim Biophys Acta ; 1851(2): 194-202, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25457224

RESUMO

The matricellular protein connective tissue growth factor (CTGF/CCN2) is recognized as key player in the onset of fibrosis in various tissues, including skeletal muscle. In many circumstances, CTGF has been shown to be induced by transforming growth factor beta (TGFß) and accounting, at least in part, for its biological action. In this study it was verified that in cultured myoblasts CTGF/CCN2 causes their transdifferentiation into myofibroblasts by up-regulating the expression of fibrosis marker proteins α-smooth muscle actin and transgelin. Interestingly, it was also found that the profibrotic effect exerted by CTGF/CCN2 was mediated by the sphingosine kinase (SK)-1/S1P3 signaling axis specifically induced by the treatment with the profibrotic cue. Following CTGF/CCN2-induced up-regulation, S1P3 became the S1P receptor subtype expressed at the highest degree, at least at mRNA level, and was thus capable of readdressing the sphingosine 1-phosphate signaling towards fibrosis rather than myogenic differentiation. Another interesting finding is that CTGF/CCN2 silencing prevented the TGFß-dependent up-regulation of SK1/S1P3 signaling axis and strongly reduced the profibrotic effect exerted by TGFß, pointing at a crucial role of endogenous CTGF/CCN2 generated following TGFß challenge in the transmission of at least part of its profibrotic effect. These results provide new insights into the molecular mechanism by which CTGF/CCN2 drives its biological action and strengthen the concept that SK1/S1P3 axis plays a critical role in the onset of fibrotic cell phenotype.


Assuntos
Transdiferenciação Celular , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Mioblastos Esqueléticos/enzimologia , Miofibroblastos/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Animais , Linhagem Celular , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/farmacologia , Relação Dose-Resposta a Droga , Fibrose , Camundongos , Mioblastos Esqueléticos/efeitos dos fármacos , Mioblastos Esqueléticos/patologia , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/patologia , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Interferência de RNA , RNA Mensageiro/metabolismo , Receptores de Lisoesfingolipídeo/efeitos dos fármacos , Receptores de Lisoesfingolipídeo/genética , Proteínas Recombinantes/farmacologia , Receptores de Esfingosina-1-Fosfato , Fatores de Tempo , Transfecção , Fator de Crescimento Transformador beta1/farmacologia , Regulação para Cima
16.
Chemistry ; 22(45): 16213-16219, 2016 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-27650996

RESUMO

Ferritins are iron-storage nanocage proteins that catalyze the oxidation of Fe2+ to Fe3+ at ferroxidase sites. By a combination of structural and spectroscopic techniques, Asp140, together with previously identified Glu57 and Glu136, is demonstrated to be an essential residue to promote the iron oxidation at the ferroxidase site. However, the presence of these three carboxylate moieties in close proximity to the catalytic centers is not essential to achieve binding of the Fe2+ substrate to the diferric ferroxidase sites with the same coordination geometries as in the wild-type cages.

17.
Angew Chem Int Ed Engl ; 55(7): 2446-9, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26756539

RESUMO

PEGylated proteins are widely used in biomedicine but, in spite of their importance, no atomic-level information is available since they are generally resistant to structural characterization approaches. PEGylated proteins are shown here to yield highly resolved solid-state NMR spectra, which allows assessment of the structural integrity of proteins when PEGylated for therapeutic or diagnostic use.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Polietilenoglicóis/química , Proteínas/química
18.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 9): 1909-20, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26327381

RESUMO

Maxi-ferritins are ubiquitous iron-storage proteins with a common cage architecture made up of 24 identical subunits of five α-helices that drive iron biomineralization through catalytic iron(II) oxidation occurring at oxidoreductase sites (OS). Structures of iron-bound human H ferritin were solved at high resolution by freezing ferritin crystals at different time intervals after exposure to a ferrous salt. Multiple binding sites were identified that define the iron path from the entry ion channels to the oxidoreductase sites. Similar data are available for another vertebrate ferritin: the M protein from Rana catesbeiana. A comparative analysis of the iron sites in the two proteins identifies new reaction intermediates and underlines clear differences in the pattern of ligands that define the additional iron sites that precede the oxidoreductase binding sites along this path. Stopped-flow kinetics assays revealed that human H ferritin has different levels of activity compared with its R. catesbeiana counterpart. The role of the different pattern of transient iron-binding sites in the OS is discussed with respect to the observed differences in activity across the species.


Assuntos
Ferritinas/química , Ferro/química , Cristalografia por Raios X , Humanos , Cinética , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Ligação Proteica
19.
J Biol Inorg Chem ; 19(4-5): 615-22, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24504941

RESUMO

Integrated ferritin protein cage function is the reversible synthesis of protein-caged, solid Fe2O3·H2O minerals from Fe(2+) for metabolic iron concentrates and oxidant protection; biomineral order differs in different ferritin proteins. The conserved 432 geometric symmetry of ferritin protein cages parallels the subunit dimer, trimer, and tetramer interfaces, and coincides with function at several cage axes. Multiple subdomains distributed in the self-assembling ferritin nanocages have functional relationships to cage symmetry such as Fe(2+) transport though ion channels (threefold symmetry), biomineral nucleation/order (fourfold symmetry), and mineral dissolution (threefold symmetry) studied in ferritin variants. On the basis of the effects of natural or synthetic subunit dimer cross-links, cage subunit dimers (twofold symmetry) influence iron oxidation and mineral dissolution. 2Fe(2+)/O2 catalysis in ferritin occurs in single subunits, but with cooperativity (n = 3) that is possibly related to the structure/function of the ion channels, which are constructed from segments of three subunits. Here, we study 2Fe(2+) + O2 protein catalysis (diferric peroxo formation) and dissolution of ferritin Fe2O3·H2O biominerals in variants with altered subunit interfaces for trimers (ion channels), E130I, and external dimer surfaces (E88A) as controls, and altered tetramer subunit interfaces (L165I and H169F). The results extend observations on the functional importance of structure at ferritin protein twofold and threefold cage axes to show function at ferritin fourfold cage axes. Here, conserved amino acids facilitate dissolution of ferritin-protein-caged iron biominerals. Biological and nanotechnological uses of ferritin protein cage fourfold symmetry and solid-state mineral properties remain largely unexplored.


Assuntos
Ferritinas/química , Ferritinas/metabolismo , Catálise , Compostos Férricos/química , Compostos Férricos/metabolismo , Ferro/química , Ferro/metabolismo , Estrutura Secundária de Proteína
20.
FASEB J ; 27(11): 4532-46, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23913862

RESUMO

In view of its multiple detrimental effects, transforming growth factor ß1 (TGFß1) is recognized as critical negative regulator of skeletal muscle repair. Apoptosis of skeletal muscle precursor cells driven by TGFß1 contributes to the negative role exerted by the cytokine in tissue repair, although the underlying molecular mechanisms are still elusive. Herein we report the identification of a new signaling pathway, relying on Rho kinase-2 stimulation, subsequent to SMAD-dependent S1P4 up-regulation and transactivation via sphingosine kinase (SK)-2, that accounts for TGFß1-induced apoptosis in cultured myoblasts. S1P4-specific gene silencing reduced by almost 50% activation of caspase-3 and poly-ADP ribosyl transferase cleavage elicited by TGFß1. Moreover, the selective S1P4 antagonist CYM50358 also reduced the TGFß1 proapoptotic effects. By employing pharmacological and molecular biological approaches, the involvement of SK2 and ROCK2 in the transmission of the TGFß1 apoptotic action was also demonstrated. These results reinforce the notion that the SK/S1P axis plays a fundamental role in TGFß1 mode of action in skeletal muscle cells and, by disclosing a novel mechanism by which TGFß1 exerts its harmful action, pinpoint new molecular targets that in principle could be beneficial in the treatment of several skeletal muscle disorders or aging-dependent muscle atrophy.


Assuntos
Apoptose , Mioblastos/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/farmacologia , Quinases Associadas a rho/metabolismo , Animais , Caspase 3/metabolismo , Linhagem Celular , Camundongos , Mioblastos/efeitos dos fármacos , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Receptores de Lisoesfingolipídeo/genética , Receptores de Esfingosina-1-Fosfato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA