Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Am J Physiol Regul Integr Comp Physiol ; 299(6): R1521-8, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20844263

RESUMO

The trans 10, cis 12-conjugated linoleic acid (10,12-CLA) isomer reduces adiposity in several animal models. In the mouse, however, this effect is associated with adipose tissue inflammation, hyperinsulinemia and hepatic lipid accumulation. Moreover, 10,12-CLA was recently shown to promote mammary ductal hyperplasia and ErbB2/Her2-driven mammary cancer in the mouse. Reasons for detrimental effects of 10,12-CLA on the mouse mammary gland could relate to its effect on the mammary fat pad (MFP), which is essential for normal development. Accordingly, we hypothesized that mammary effects of 10,12-CLA were mediated through the MFP in a dose-dependent manner. Female FVB mice were fed 10,12-CLA at doses of 0%, 0.1%, 0.2%, or 0.5% of the diet from day 24 of age, and effects on mammary development and metabolism were measured on day 49. The 0.5% dose reduced ductal elongation and caused premature alveolar budding. These effects were associated with increased expression of inflammatory markers and genes shown to alter epithelial growth (IGF binding protein-5) and alveolar budding (TNF-α and receptor of activated NF-κB ligand). The 0.5% dose also caused hyperinsulinemia and hepatic lipid accumulation. In contrast, the 0.1% 10,12-CLA dose had no adverse effects on mammary development, metabolic events, and inflammatory responses, but remained effective in decreasing adipose weights and lipogenic gene expression. These results show that a low dose of 10,12-CLA reduces adiposity in the mouse without negative effects on mammary development, inflammation, and metabolism, and suggest that previously reported detrimental effects relate to the use of excessive doses.


Assuntos
Adiposidade/efeitos dos fármacos , Metabolismo Basal/efeitos dos fármacos , Inflamação/induzido quimicamente , Ácidos Linoleicos Conjugados/farmacologia , Glândulas Mamárias Animais/efeitos dos fármacos , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Administração Oral , Animais , Biomarcadores/metabolismo , Relação Dose-Resposta a Droga , Feminino , Hiperinsulinismo/induzido quimicamente , Hiperinsulinismo/metabolismo , Inflamação/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/metabolismo , Camundongos , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
2.
J Dairy Sci ; 93(1): 32-7, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20059901

RESUMO

Very long chain n-3 fatty acids such as eicosapentaenoic acid (EPA; 20:5n-3) are important in human cardiac health and the prevention of chronic diseases, but food sources are limited. Stearidonic acid (SDA; 18:4n-3) is an n-3 fatty acid that humans are able to convert to EPA. In utilizing SDA-enhanced soybean oil (SBO) derived from genetically modified soybeans, our objectives were to examine the potential to increase the n-3 fatty acid content of milk fat and to determine the efficiency of SDA uptake from the digestive tract and transfer to milk fat. Three multiparous, rumen-fistulated Holstein cows were assigned randomly in a 3 x 3 Latin square design to the following treatments: 1) control (no oil infusion); 2) abomasal infusion of SDA-enhanced SBO (SDA-abo); and 3) ruminal infusion of SDA-enhanced SBO (SDA-rum). The SDA-enhanced SBO contained 27.1% SDA, 10.4% alpha-linolenic acid, and 7.2% gamma-linolenic acid. Oil infusions provided 57 g/d of SDA with equal amounts of oil infused into either the rumen or abomasum at 6-h intervals over a 7-d infusion period. Cow numbers were limited and no treatment differences were detected for DMI or milk production (22.9+/-0.5 kg/d and 32.3+/-0.9 kg/d, respectively; least squares means +/- SE), milk protein percentage and yield (3.24+/-0.04% and 1.03+/-0.02 kg/d), or lactose percentage and yield (4.88+/-0.05% and 1.55+/-0.05 kg/d). Treatment also had no effect on milk fat yield (1.36+/-0.03 kg/d), but milk fat percentage was lower for the SDA-rum treatment (4.04+/-0.04% vs. 4.30+/-0.04% for control and 4.41+/-0.05% for SDA-abo). The SDA-abo treatment increased n-3 fatty acids to 3.9% of total milk fatty acids, a value more than 5-fold greater than that for the control. Expressed as a percentage of total milk fatty acids, values (least squares means +/- SE) for the SDA-abo treatment were 1.55+/-0.03% for alpha-linolenic acid (18:3n-3), 1.86+/-0.02 for SDA, 0.23 +/- <0.01 for eicosatetraenoic acid (20:4n-3), and 0.18+/-0.01 for EPA. Transfer efficiency of SDA to milk fat represented 39.3% (range=36.8 to 41.9%) of the abomasally infused SDA and 47.3% (range=45.0 to 49.6%) when the n-3 fatty acids downstream from SDA were included. In contrast, transfer of ruminally infused SDA to milk fat averaged only 1.7% (range=1.3 to 2.1%), indicating extensive rumen biohydrogenation. Overall, results demonstrate the potential to use SDA-enhanced SBO from genetically modified soybeans combined with proper ruminal protection to achieve impressive increases in the milk fat content of SDA and other n-3 fatty acids that are beneficial for human health.


Assuntos
Indústria de Laticínios/métodos , Gorduras/química , Ácidos Graxos Ômega-3/análise , Leite/química , Plantas Geneticamente Modificadas/química , Óleo de Soja/administração & dosagem , Animais , Bovinos , Ácidos Graxos Ômega-3/metabolismo , Feminino , Gravidez , Distribuição Aleatória
3.
J Dairy Sci ; 85(10): 2609-17, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12416815

RESUMO

Short-term studies (< 5 d) involving abomasal infusion of a mixture of CLA isomers or pure trans-10, cis-12 CLA have demonstrated that supplements of conjugated linoleic acids (CLA) reduce milk fat synthesis during established lactation in dairy cows. Our objective was to assess longer term effects of supplementation during established lactation using a dietary supplement of rumen-protected CLA. Thirty Holstein cows were blocked by parity and received a dietary fat supplement of either Ca-salts of palm oil fatty acids (control) or a mixture of Ca-salts of palm oil fatty acids plus Ca-salts of CLA (CLA treatment). Supplements provided about 90 g/d of fatty acids and were topdressed on the TMR. The CLA supplement provided 30.4 g/d of CLA in which the predominant isomers were: trans-8, cis-10 (9.2%), cis-9, trans-11 (25.1%), trans-10, cis-12 (28.9%), and cis-11, trans-13 (16.1%). All cows were pregnant; treatments were initiated on d 79 of pregnancy (approximately 200 d prepartum) and continued for 140 d until dry off. Twenty-three cows completed the study; those receiving CLA supplement had a lower milk fat test (2.90 versus 3.80%) and a 23% reduction in milk fat yield (927 versus 1201 g/d). Intake of DM, milk yield, and the yield and content of true protein and lactose in milk were unaffected by treatment. Milk fat analysis indicated that the CLA supplement reduced the secretion of fatty acids of all chain lengths. However, effects were proportionally greater on short and medium chain fatty acids, thereby causing a shift in the milk fatty acid composition to a greater content of longer-chain fatty acids. Changes in body weight gain, body condition score, and net energy balance were not significant and imply no differences in cows fed the CLA supplement in replenishment of body reserves in late lactation. Likewise, maintenance of pregnancy, gestation length, and calf birth weight were unaffected by treatment. Overall, feeding a dietary supplement of rumen-protected CLA to pregnant cows over the last 140 d of the lactation cycle resulted in a marked reduction in milk fat content and yield, and a shift in milk fatty acid composition, but other milk components, DMI, maintenance of pregnancy, and cow well-being were unaffected.


Assuntos
Bovinos/fisiologia , Lactação , Ácido Linoleico/administração & dosagem , Rúmen/metabolismo , Fenômenos Fisiológicos da Nutrição Animal , Animais , Suplementos Nutricionais , Feminino , Cinética , Lipídeos/análise , Glândulas Mamárias Animais/enzimologia , Leite/química , Proteínas do Leite/análise , Estearoil-CoA Dessaturase/metabolismo
4.
J Dairy Sci ; 86(10): 3218-28, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14594242

RESUMO

Holstein cows (n = 30) entering second or greater lactation were fed fat supplements (90 g/d of fatty acids) consisting of Ca salts of either palm fatty acid distillate (control) or a mixture of palm fatty acid distillate and mixed isomers of conjugated linoleic acid (CLA, 30.4 g/ d) from 2 wk prepartum through 20 wk postpartum to determine whether CLA would inhibit milk fat synthesis during early lactation and, in turn, affect energy metabolism of dairy cows during the transition period and early lactation. Feeding CLA did not affect DMI or plasma concentrations of glucose, nonesterfied fatty acids, or beta-hydroxbutyrate during the prepartum period and did not affect postpartum DMI. Feeding CLA reduced milk fat content by 12.5% during early lactation; however, cows fed CLA tended to produce approximately 3 kg/d more milk during the first 20 wk of lactation. Feeding CLA tended to decrease the contribution of short- and medium-chain (C < or = 16) fatty acids to milk fat. Changes in milk yield, milk fat content, and milk fatty acid composition were not apparent until after the second week of lactation. Yield of 3.5% fat-corrected milk, milk protein content, milk protein composition, and calculated energy balance were not affected by treatment. Postpartum concentrations of glucose, nonesterfied fatty acids, and beta-hydroxbutyrate in plasma and hepatic content of glycogen and triglycerides were similar between treatments. These data imply that with CLA treatment in early lactation, dairy cows decreased milk fat synthesis and appeared to respond by partitioning more nutrients toward milk synthesis rather than improving net energy balance.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Bovinos/fisiologia , Lactação , Ácidos Linoleicos Conjugados/administração & dosagem , Ácido 3-Hidroxibutírico/sangue , Animais , Glicemia/análise , Suplementos Nutricionais , Ingestão de Alimentos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Ácidos Graxos/análise , Ácidos Graxos não Esterificados/sangue , Feminino , Lipídeos/análise , Leite/química , Período Pós-Parto , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA