Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Glob Chang Biol ; 26(8): 4401-4417, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32359002

RESUMO

Anthropogenic changes in climate, land use, and disturbance regimes, as well as introductions of non-native species can lead to the transformation of many ecosystems. The resulting novel ecosystems are usually characterized by species assemblages that have not occurred previously in a given area. Quantifying the ecological novelty of communities (i.e., biotic novelty) would enhance the understanding of environmental change. However, quantification remains challenging since current novelty metrics, such as the number and/or proportion of non-native species in a community, fall short of considering both functional and evolutionary aspects of biotic novelty. Here, we propose the Biotic Novelty Index (BNI), an intuitive and flexible multidimensional measure that combines (a) functional differences between native and non-native introduced species with (b) temporal dynamics of species introductions. We show that the BNI is an additive partition of Rao's quadratic entropy, capturing the novel interaction component of the community's functional diversity. Simulations show that the index varies predictably with the relative amount of functional novelty added by recently arrived species, and they illustrate the need to provide an additional standardized version of the index. We present a detailed R code and two applications of the BNI by (a) measuring changes of biotic novelty of dry grassland plant communities along an urbanization gradient in a metropolitan region and (b) determining the biotic novelty of plant species assemblages at a national scale. The results illustrate the applicability of the index across scales and its flexibility in the use of data of different quality. Both case studies revealed strong connections between biotic novelty and increasing urbanization, a measure of abiotic novelty. We conclude that the BNI framework may help building a basis for better understanding the ecological and evolutionary consequences of global change.


Assuntos
Ecossistema , Espécies Introduzidas , Biodiversidade , Evolução Biológica , Plantas , Urbanização
2.
Glob Ecol Biogeogr ; 29(6): 978-991, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34938151

RESUMO

BACKGROUND AND AIMS: Since its emergence in the mid-20th century, invasion biology has matured into a productive research field addressing questions of fundamental and applied importance. Not only has the number of empirical studies increased through time, but also has the number of competing, overlapping and, in some cases, contradictory hypotheses about biological invasions. To make these contradictions and redundancies explicit, and to gain insight into the field's current theoretical structure, we developed and applied a Delphi approach to create a consensus network of 39 existing invasion hypotheses. RESULTS: The resulting network was analysed with a link-clustering algorithm that revealed five concept clusters (resource availability, biotic interaction, propagule, trait and Darwin's clusters) representing complementary areas in the theory of invasion biology. The network also displays hypotheses that link two or more clusters, called connecting hypotheses, which are important in determining network structure. The network indicates hypotheses that are logically linked either positively (77 connections of support) or negatively (that is, they contradict each other; 6 connections). SIGNIFICANCE: The network visually synthesizes how invasion biology's predominant hypotheses are conceptually related to each other, and thus, reveals an emergent structure - a conceptual map - that can serve as a navigation tool for scholars, practitioners and students, both inside and outside of the field of invasion biology, and guide the development of a more coherent foundation of theory. Additionally, the outlined approach can be more widely applied to create a conceptual map for the larger fields of ecology and biogeography.

3.
Bioscience ; 69(11): 888-899, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31719711

RESUMO

Global change has complex eco-evolutionary consequences for organisms and ecosystems, but related concepts (e.g., novel ecosystems) do not cover their full range. Here we propose an umbrella concept of "ecological novelty" comprising (1) a site-specific and (2) an organism-centered, eco-evolutionary perspective. Under this umbrella, complementary options for studying and communicating effects of global change on organisms, ecosystems, and landscapes can be included in a toolbox. This allows researchers to address ecological novelty from different perspectives, e.g., by defining it based on (a) categorical or continuous measures, (b) reference conditions related to sites or organisms, and (c) types of human activities. We suggest striving for a descriptive, non-normative usage of the term "ecological novelty" in science. Normative evaluations and decisions about conservation policies or management are important, but require additional societal processes and engagement with multiple stakeholders.

4.
Ecol Evol ; 14(7): e11639, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38962026

RESUMO

Urbanisation alters biodiversity patterns and threatens to disrupt mutualistic interactions. Aside from pollination, however, little is known about how mutualisms change in cities. Our study aimed to assess how urbanisation affects the protective mutualism between ants and aphids, investigating potential behavioural changes in mutualistic ants and their implications for aphids in urban environments. To do so, we studied the protective mutualism between the pink tansy aphid (Metopeurum fuscoviride) and the black garden ant (Lasius niger) along an urbanisation gradient in Berlin, Germany. In nine locations along this gradient, we measured aphid colony dynamics and proxies for parasitism, quantified the investment of ants in tending aphids and conducted behavioural assays to test the aggressiveness of ant responses to a simulated attack on the aphids. We found that aphid colonies flourished and were equally tended by ants across the urbanisation gradient, with a consistent positive density dependence between aphid and ant numbers. However, ants from more urbanised sites responded more aggressively to the simulated attack. Our findings suggest that this protective mutualism is not only maintained in the city, but that ants might even rely more on it and defend it more aggressively, as other food resources may become scarce and more unpredictable with urbanisation. We thereby provide unique insights into this type of mutualism in the city, further diversifying the growing body of work on mutualisms across urbanisation gradients.

5.
Biol Rev Camb Philos Soc ; 98(5): 1530-1547, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37072921

RESUMO

Urban ecology is a rapidly growing research field that has to keep pace with the pressing need to tackle the sustainability crisis. As an inherently multi-disciplinary field with close ties to practitioners and administrators, research synthesis and knowledge transfer between those different stakeholders is crucial. Knowledge maps can enhance knowledge transfer and provide orientation to researchers as well as practitioners. A promising option for developing such knowledge maps is to create hypothesis networks, which structure existing hypotheses and aggregate them according to topics and research aims. Combining expert knowledge with information from the literature, we here identify 62 research hypotheses used in urban ecology and link them in such a network. Our network clusters hypotheses into four distinct themes: (i) Urban species traits & evolution, (ii) Urban biotic communities, (iii) Urban habitats and (iv) Urban ecosystems. We discuss the potentials and limitations of this approach. All information is openly provided as part of an extendable Wikidata project, and we invite researchers, practitioners and others interested in urban ecology to contribute additional hypotheses, as well as comment and add to the existing ones. The hypothesis network and Wikidata project form a first step towards a knowledge base for urban ecology, which can be expanded and curated to benefit both practitioners and researchers.


Assuntos
Ecologia , Ecossistema , Biota , Fenótipo
6.
Ambio ; 51(11): 2261-2277, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35594005

RESUMO

Pollen allergies have been on the rise in cities, where anthropogenic disturbances, warmer climate and introduced species are shaping novel urban ecosystems. Yet, the allergenic potential of these urban ecosystems, in particular spontaneous vegetation outside parks and gardens, remains poorly known. We quantified the allergenic properties of 56 dry grasslands along a double gradient of urbanisation and plant invasion in Berlin (Germany). 30% of grassland species were classified as allergenic, most of them being natives. Urbanisation was associated with an increase in abundance and diversity of pollen allergens, mainly driven by an increase in allergenic non-native plants. While not inherently more allergenic than native plants, the pool of non-natives contributed a larger biochemical diversity of allergens and flowered later than natives, creating a broader potential spectrum of allergy. Managing novel risks to urban public health will involve not only targeted action on allergenic non-natives, but also policies at the habitat scale favouring plant community assembly of a diverse, low-allergenicity vegetation. Similar approaches could be easily replicated in other cities to provide a broad quantification and mapping of urban allergy risks and drivers.


Assuntos
Hipersensibilidade , Urbanização , Alérgenos , Ecossistema , Pradaria , Hipersensibilidade/epidemiologia , Hipersensibilidade/etiologia , Plantas
7.
Ecol Evol ; 12(9): e9259, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36177125

RESUMO

One of the most challenging endeavors for students is choosing a career path that best fits their interests, wills and skills, and setting their professional goals accordingly. Such decisions are often made from within the culture of academia, in which mentors and peers are mainly familiar with the academic job market and lack the knowledge necessary to consult about other types of careers. We aimed to address this gap for ecology and related fields by creating an engaging and effective tool to help students and professionals to familiarize themselves with the diversity of potential career paths available to ecologists. The tool is an applied card game - the Ecologist's Career Compass - which is provided here freely. The game is played as a trump card game and includes 33 cards, each representing a combination of one of four job-market sectors and one of nine types of positions. Each card indicates the level of seven skill categories required to likely be hired and succeed in the focal position at the focal sector, as well as more specific examples for typical jobs in the focal combination. The information in the game largely relies on input from a global survey we conducted among 315 ecologists from 35 countries. While the challenges faced by early-career ecologists in developing their professional path are substantial and diverse, this game can assist in gaining a broad comparative overview of the whole ecology job market and the skills required to likely excel in different paths. We hope this applied game will act as a conversation starter about the diversity of aspirations and opportunities in ecology classrooms and labs.

8.
PLoS One ; 14(11): e0225438, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31756202

RESUMO

Urbanization is driving the transformation of natural and rural ecosystems worldwide by affecting both the abiotic environment and the biota. This raises the question whether urban ecosystems are able to provide services in a comparable way to their non-urban counterparts. In urban grasslands, the effects of urbanization-driven ecological novelty and the role of plant diversity in modulating ecosystem functioning have received little attention. In this study, we assessed the influence of biodiversity, abiotic and biotic novelty on ecosystem functioning based on in situ measurements in non-manipulated grasslands along an urbanization gradient in Berlin (Germany). We focused on plant aboveground biomass (AGB), intrinsic water-use efficiency (iWUE) and 15N enrichment factor (Δδ15N) as proxies for biomass production, water and N cycling, respectively, within grassland communities, and tested how they change with plant biogeographic status (native vs alien), functional group and species identity. Approximately one third of the forb species were alien to Berlin and they were responsible for 13.1% of community AGB. Community AGB was positively correlated with plant-species richness. In contrast, iWUE and Δδ15N were mostly determined by light availability (depicted by sky view factor) and urban parameters like the percentage of impervious surface or human population density. We found that abiotic novelty potentially favors aliens in Berlin, mainly by enhancing their dispersal and fitness under drought. Mainly urban parameters indicating abiotic novelty were significantly correlated to both alien and native Δδ15N, but to AGB and iWUE of alien plants only, pointing to a stronger impact of abiotic novelty on N cycling compared to C and water cycling. At the species level, sky view factor appeared to be the prevailing driver of photosynthetic performance and resource-use efficiency. Although we identified a significant impact of abiotic novelty on AGB, iWUE and Δδ15N at different levels, the relationship between species richness and community AGB found in the urban grasslands studied in Berlin was comparable to that described in non-urban experimental grasslands in Europe. Hence, our results indicate that conserving and enhancing biodiversity in urban ecosystems is essential to preserve ecosystem services related to AGB production. For ensuring the provision of ecosystem services associated to water and N use, however, changes in urban abiotic parameters seem necessary.


Assuntos
Biodiversidade , Pradaria , Plantas/metabolismo , Biomassa , Clorofila A/química , Clorofila A/metabolismo , Alemanha , Ciclo do Nitrogênio , Desenvolvimento Vegetal , Estações do Ano , Solo/química , Urbanização , Água/metabolismo
9.
Sci Rep ; 9(1): 2540, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30796259

RESUMO

Environmental changes alter the diversity and structure of communities. By shifting the range of species traits that will be successful under new conditions, environmental drivers can also dramatically impact ecosystem functioning and resilience. Above and belowground communities jointly regulate whole-ecosystem processes and responses to change, yet they are frequently studied separately. To determine whether these communities respond similarly to environmental changes, we measured taxonomic and trait-based responses of plant and soil microbial communities to four years of experimental warming and nitrogen deposition in a temperate grassland. Plant diversity responded strongly to N addition, whereas soil microbial communities responded primarily to warming, likely via an associated decrease in soil moisture. These above and belowground changes were associated with selection for more resource-conservative plant and microbe growth strategies, which reduced community functional diversity. Functional characteristics of plant and soil microbial communities were weakly correlated (P = 0.07) under control conditions, but not when above or belowground communities were altered by either global change driver. These results highlight the potential for global change drivers operating simultaneously to have asynchronous impacts on above and belowground components of ecosystems. Assessment of a single ecosystem component may therefore greatly underestimate the whole-system impact of global environmental changes.

10.
Ecol Evol ; 4(14): 2799-811, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25165520

RESUMO

In plant leaves, resource use follows a trade-off between rapid resource capture and conservative storage. This "worldwide leaf economics spectrum" consists of a suite of intercorrelated leaf traits, among which leaf mass per area, LMA, is one of the most fundamental as it indicates the cost of leaf construction and light-interception borne by plants. We conducted a broad-scale analysis of the evolutionary history of LMA across a large dataset of 5401 vascular plant species. The phylogenetic signal in LMA displayed low but significant conservatism, that is, leaf economics tended to be more similar among close relatives than expected by chance alone. Models of trait evolution indicated that LMA evolved under weak stabilizing selection. Moreover, results suggest that different optimal phenotypes evolved among large clades within which extremes tended to be selected against. Conservatism in LMA was strongly related to growth form, as were selection intensity and phenotypic evolutionary rates: woody plants showed higher conservatism in relation to stronger stabilizing selection and lower evolutionary rates compared to herbaceous taxa. The evolutionary history of LMA thus paints different evolutionary trajectories of vascular plant species across clades, revealing the coordination of leaf trait evolution with growth forms in response to varying selection regimes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA