Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(3): 662-662.e1, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36736302

RESUMO

Click reactions in a biological setting serve as a way to join two components-for example, a caged prodrug and a decaging agent or a drug and an antibody. Click chemistry has already made several inroads into the clinic with more therapeutic platforms in the making. To view this SnapShot, open or download the PDF.


Assuntos
Química Click
2.
Mol Cell ; 81(16): 3323-3338.e14, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34352207

RESUMO

The emerging "epitranscriptomics" field is providing insights into the biological and pathological roles of different RNA modifications. The RNA methyltransferase METTL1 catalyzes N7-methylguanosine (m7G) modification of tRNAs. Here we find METTL1 is frequently amplified and overexpressed in cancers and is associated with poor patient survival. METTL1 depletion causes decreased abundance of m7G-modified tRNAs and altered cell cycle and inhibits oncogenicity. Conversely, METTL1 overexpression induces oncogenic cell transformation and cancer. Mechanistically, we find increased abundance of m7G-modified tRNAs, in particular Arg-TCT-4-1, and increased translation of mRNAs, including cell cycle regulators that are enriched in the corresponding AGA codon. Accordingly, Arg-TCT expression is elevated in many tumor types and is associated with patient survival, and strikingly, overexpression of this individual tRNA induces oncogenic transformation. Thus, METTL1-mediated tRNA modification drives oncogenic transformation through a remodeling of the mRNA "translatome" to increase expression of growth-promoting proteins and represents a promising anti-cancer target.


Assuntos
Carcinogênese/genética , Metiltransferases/genética , Neoplasias/genética , tRNA Metiltransferases/genética , Guanosina/análogos & derivados , Guanosina/genética , Humanos , Metilação , Neoplasias/patologia , Oncogenes/genética , Processamento Pós-Transcricional do RNA/genética , RNA Mensageiro/genética , RNA de Transferência/genética
3.
Nature ; 565(7738): 186-191, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30626941

RESUMO

We describe a de novo computational approach for designing proteins that recapitulate the binding sites of natural cytokines, but are otherwise unrelated in topology or amino acid sequence. We use this strategy to design mimics of the central immune cytokine interleukin-2 (IL-2) that bind to the IL-2 receptor ßγc heterodimer (IL-2Rßγc) but have no binding site for IL-2Rα (also called CD25) or IL-15Rα (also known as CD215). The designs are hyper-stable, bind human and mouse IL-2Rßγc with higher affinity than the natural cytokines, and elicit downstream cell signalling independently of IL-2Rα and IL-15Rα. Crystal structures of the optimized design neoleukin-2/15 (Neo-2/15), both alone and in complex with IL-2Rßγc, are very similar to the designed model. Neo-2/15 has superior therapeutic activity to IL-2 in mouse models of melanoma and colon cancer, with reduced toxicity and undetectable immunogenicity. Our strategy for building hyper-stable de novo mimetics could be applied generally to signalling proteins, enabling the creation of superior therapeutic candidates.


Assuntos
Desenho de Fármacos , Interleucina-15/imunologia , Interleucina-2/imunologia , Mimetismo Molecular , Receptores de Interleucina-2/agonistas , Receptores de Interleucina-2/imunologia , Sequência de Aminoácidos , Animais , Sítios de Ligação , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/imunologia , Simulação por Computador , Cristalografia por Raios X , Modelos Animais de Doenças , Humanos , Interleucina-15/uso terapêutico , Interleucina-2/uso terapêutico , Subunidade alfa de Receptor de Interleucina-2/imunologia , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Melanoma/tratamento farmacológico , Melanoma/imunologia , Camundongos , Modelos Moleculares , Estabilidade Proteica , Receptores de Interleucina-2/metabolismo , Transdução de Sinais/imunologia
4.
J Am Chem Soc ; 146(30): 20709-20719, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39012647

RESUMO

Chemical post-translational protein-protein conjugation is an important technique with growing applications in biotechnology and pharmaceutical research. Maleimides represent one of the most widely employed bioconjugation reagents. However, challenges associated with the instability of first- and second-generation maleimide technologies are yet to be fully addressed. We report the development of a novel class of maleimide reagents that can undergo on-demand ring-opening hydrolysis of the resulting thio-succinimide. This strategy enables rapid post-translational assembly of protein-protein conjugates. Thio-succinimide hydrolysis, triggered upon application of chemical, photochemical, or enzymatic stimuli, allowed homobifunctional bis-maleimide reagents to be applied in the production of stable protein-protein conjugates, with complete temporal control. Bivalent and bispecific protein-protein dimers constructed from small binders targeting antigens of oncological importance, PD-L1 and HER2, were generated with high purity, stability, and improved functionality compared to monomeric building blocks. The modularity of the approach was demonstrated through elaboration of the linker moiety through a bioorthogonal propargyl handle to produce protein-protein-fluorophore conjugates. Furthermore, extending the functionality of the homobifunctional reagents by temporarily masking reactive thiols included in the linker allowed the assembly of higher order trimeric and tetrameric single-domain antibody conjugates. The potential for the approach to be extended to proteins of greater biochemical complexity was demonstrated in the production of immunoglobulin single-domain antibody conjugates. On-demand control of thio-succinimide hydrolysis combined with the facile assembly of chemically defined homo- and heterodimers constitutes an important expansion of the chemical methods available for generating stable protein-protein conjugates.


Assuntos
Maleimidas , Succinimidas , Hidrólise , Succinimidas/química , Maleimidas/química , Proteínas/química , Receptor ErbB-2/metabolismo , Receptor ErbB-2/química , Humanos , Estrutura Molecular
5.
J Am Chem Soc ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39113488

RESUMO

Selective cleavage of amide bonds holds prominent significance by facilitating precise manipulation of biomolecules, with implications spanning from basic research to therapeutic interventions. However, achieving selective cleavage of amide bonds via mild synthetic chemistry routes poses a critical challenge. Here, we report a novel amide bond-cleavage reaction triggered by Na[AuCl4] in mild aqueous conditions, where a crucial cyclization step leads to the formation of a 5-membered ring intermediate that rapidly hydrolyses to release the free amine in high yields. Notably, the reaction exhibits remarkable site-specificity to cleave peptide bonds at the C-terminus of allyl-glycine. The strategic introduction of a leaving group at the allyl position facilitated a dual-release approach through π-acid catalyzed substitution. This reaction was employed for the targeted release of the cytotoxic drug monomethyl auristatin E in combination with an antibody-drug conjugate in cancer cells. Finally, Au-mediated prodrug activation was shown in a colorectal zebrafish xenograft model, leading to a significant increase in apoptosis and tumor shrinkage. Our findings reveal a novel metal-based cleavable reaction expanding the utility of Au complexes beyond catalysis to encompass bond-cleavage reactions for cancer therapy.

6.
Chembiochem ; 25(4): e202300736, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38195841

RESUMO

PROTAC linker design remains mostly an empirical task. We employed the PRosettaC computational software in the design of sulfonyl-fluoride-based PROTACs targeting acyl protein thioesterase 1 (APT1). The software efficiently generated ternary complex models from empirically-designed PROTACs and suggested alkyl linkers to be the preferred type of linker to target APT1. Western blotting analysis revealed efficient degradation of APT1 and activity-based protein profiling showed remarkable selectivity of an alkyl linker-based PROTAC amongst serine hydrolases. Collectively, our data suggests that combining PRosettaC and chemoproteomics can effectively assist in triaging PROTACs for synthesis and providing early data on their potency and selectivity.

7.
Bioconjug Chem ; 35(2): 132-139, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38345213

RESUMO

Targeted drug delivery approaches that selectively and preferentially deliver therapeutic agents to specific tissues are of great interest for safer and more effective pharmaceutical treatments. We investigated whether cathepsin B cleavage of a valine-citrulline [VC(S)]-containing linker is required for the release of monomethyl auristatin E (MMAE) from albumin-drug conjugates. In this study, we used an engineered version of human serum albumin, Veltis High Binder II (HBII), which has enhanced binding to the neonatal Fc (fragment crystallizable) receptor (FcRn) to improve drug release upon binding and FcRn-mediated recycling. The linker-payload was conjugated to cysteine 34 of albumin using a carbonylacrylic (caa) reagent which produced homogeneous and plasma stable conjugates that retained FcRn binding. Two caa-linker-MMAE reagents were synthesized─one with a cleavable [VC(S)] linker and one with a noncleavable [VC(R)] linker─to question whether protease-mediated cleavage is needed for MMAE release. Our findings demonstrate that cathepsin B is required to achieve efficient and selective antitumor activity. The conjugates equipped with the cleavable [VC(S)] linker had potent antitumor activity in vivo facilitated by the release of free MMAE upon FcRn binding and internalization. In addition to the pronounced antitumor activity of the albumin conjugates in vivo, we also demonstrated their preferable tumor biodistribution and biocompatibility with no associated toxicity or side effects. These results suggest that the use of engineered albumins with high FcRn binding combined with protease cleavable linkers is an efficient strategy to target delivery of drugs to solid tumors.


Assuntos
Antineoplásicos , Imunoconjugados , Neoplasias , Humanos , Recém-Nascido , Albuminas/metabolismo , Catepsina B/metabolismo , Linhagem Celular Tumoral , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Imunoconjugados/metabolismo , Neoplasias/tratamento farmacológico , Peptídeo Hidrolases , Distribuição Tecidual
8.
J Infect Dis ; 228(6): 723-733, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37279654

RESUMO

The emergence of novel variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) underscores the need to investigate alternative approaches to prevent infection and treat patients with coronavirus disease 2019. Here, we report the preclinical efficacy of NL-CVX1, a de novo decoy that blocks virus entry into cells by binding with nanomolar affinity and high specificity to the receptor-binding domain of the SARS-CoV-2 spike protein. Using a transgenic mouse model of SARS-CoV-2 infection, we showed that a single prophylactic intranasal dose of NL-CVX1 conferred complete protection from severe disease following SARS-CoV-2 infection. Multiple therapeutic administrations of NL-CVX1 also protected mice from succumbing to infection. Finally, we showed that infected mice treated with NL-CVX1 developed both anti-SARS-CoV-2 antibodies and memory T cells and were protected against reinfection a month after treatment. Overall, these observations suggest NL-CVX1 is a promising therapeutic candidate for preventing and treating severe SARS-CoV-2 infections.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Animais , Humanos , Camundongos , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/prevenção & controle , Camundongos Transgênicos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
9.
Angew Chem Int Ed Engl ; : e202412925, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162084

RESUMO

RNA is a central molecule in life, involved in a plethora of biological processes and playing a key role in many diseases. Targeting RNA emerges as a significant endeavor in drug discovery, diverging from conventional protein-centric approaches to tackle various pathologies. Whilst identifying small molecules that bind to specific RNA regions is the first step, the abundance of non-functional RNA segments renders many interactions biologically inert. Consequently, small molecule binding does not necessarily meet stringent criteria for clinical translation, calling for solutions to push the field forward. Converting RNA-binders into RNA-degraders presents a promising avenue to enhance RNA-targeting. This mini-review outlines strategies and exemplars wherein simple small molecule RNA binders are reprogrammed into active degraders through the linkage of functional groups. These approaches encompass mechanisms that induce degradation via endogenous enzymes, termed RIBOTACs, as well as those with functional moieties acting autonomously to degrade RNA. Through this exploration, we aim to offer insights into advancing RNA-targeted therapeutic strategies.

10.
J Am Chem Soc ; 145(47): 25776-25788, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37972287

RESUMO

Misfolded protein oligomers are of central importance in both the diagnosis and treatment of Alzheimer's and Parkinson's diseases. However, accurate high-throughput methods to detect and quantify oligomer populations are still needed. We present here a single-molecule approach for the detection and quantification of oligomeric species. The approach is based on the use of solid-state nanopores and multiplexed DNA barcoding to identify and characterize oligomers from multiple samples. We study α-synuclein oligomers in the presence of several small-molecule inhibitors of α-synuclein aggregation as an illustration of the potential applicability of this method to the development of diagnostic and therapeutic methods for Parkinson's disease.


Assuntos
Nanoporos , Doença de Parkinson , Humanos , alfa-Sinucleína/metabolismo , Doença de Parkinson/metabolismo
11.
J Am Chem Soc ; 145(19): 10790-10799, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37133984

RESUMO

The ability to control the activation of prodrugs by transition metals has been shown to have great potential for controlled drug release in cancer cells. However, the strategies developed so far promote the cleavage of C-O or C-N bonds, which limits the scope of drugs to only those that present amino or hydroxyl groups. Here, we report the decaging of an ortho-quinone prodrug, a propargylated ß-lapachone derivative, through a palladium-mediated C-C bond cleavage. The reaction's kinetic and mechanistic behavior was studied under biological conditions along with computer modeling. The results indicate that palladium (II) is the active species for the depropargylation reaction, activating the triple bond for nucleophilic attack by a water molecule before the C-C bond cleavage takes place. Palladium iodide nanoparticles were found to efficiently trigger the C-C bond cleavage reaction under biocompatible conditions. In drug activation assays in cells, the protected analogue of ß-lapachone was activated by nontoxic amounts of nanoparticles, which restored drug toxicity. The palladium-mediated ortho-quinone prodrug activation was further demonstrated in zebrafish tumor xenografts, which resulted in a significant anti-tumoral effect. This work expands the transition-metal-mediated bioorthogonal decaging toolbox to include cleavage of C-C bonds and payloads that were previously not accessible by conventional strategies.


Assuntos
Naftoquinonas , Neoplasias , Pró-Fármacos , Animais , Humanos , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Paládio/química , Peixe-Zebra
12.
Angew Chem Int Ed Engl ; 62(28): e202304449, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37142557

RESUMO

The demand for new biomass-derived fine and commodity chemicals propels the discovery of new methodologies and synthons. Whereas furfural and 5-hydroxymethylfurfural are cornerstones of sustainable chemistry, 3-acetamido-5-acetyl furan (3A5AF), an N-rich furan obtained from chitin biomass, remains unexplored, due to the poor reactivity of the acetyl group relative to previous furanic aldehydes. Here we developed a reactive 3-acetamido-5-furfuryl aldehyde (3A5F) and demonstrated the utility of this synthon as a source of bio-derived nitrogen-rich heteroaromatics, carbocycles, and as a bioconjugation reagent.


Assuntos
Furaldeído , Furanos , Biomassa , Aldeídos , Quitina
13.
Angew Chem Int Ed Engl ; 62(44): e202311186, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37682023

RESUMO

Multicomponent reactions are of utmost importance at generating a unique, wide, and complex chemical space. Herein we describe a novel multicomponent approach based on the combination of the isonitrile-tetrazine (4+1) cycloaddition and the Ugi four-component reaction to generate pyrazole amide derivatives. The scope of the reaction as well as mechanistic insights governing the 4H-pyrazol-4-imine tautomerization are provided. This multicomponent process provides access to a new chemical space of pyrazole amide derivatives and offers a tool for peptide modification and stapling.

14.
J Am Chem Soc ; 144(32): 14404-14419, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35912579

RESUMO

Fusion proteins play an essential role in the biosciences but suffer from several key limitations, including the requirement for N-to-C terminal ligation, incompatibility of constituent domains, incorrect folding, and loss of biological activity. This perspective focuses on chemical and enzymatic approaches for the post-translational generation of well-defined protein-protein conjugates, which overcome some of the limitations faced by traditional fusion techniques. Methods discussed range from chemical modification of nucleophilic canonical amino acid residues to incorporation of unnatural amino acid residues and a range of enzymatic methods, including sortase-mediated ligation. Through summarizing the progress in this rapidly growing field, the key successes and challenges associated with using chemical and enzymatic approaches are highlighted and areas requiring further development are discussed.


Assuntos
Aminoácidos , Proteínas , Aminoácidos/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas/química
15.
J Am Chem Soc ; 144(29): 13026-13031, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35834748

RESUMO

Post-translational protein-protein conjugation produces bioconjugates that are unavailable via genetic fusion approaches. A method for preparing protein-protein conjugates using π-clamp-mediated cysteine arylation with pentafluorophenyl sulfonamide functional groups is described. Two computationally designed antibodies targeting the SARS-CoV-2 receptor binding domain were produced (KD = 146, 581 nM) with a π-clamp sequence near the C-terminus and dimerized using this method to provide a 10-60-fold increase in binding (KD = 8-15 nM). When two solvent-exposed cysteine residues were present on the second protein domain, the π-clamp cysteine residue was selectively modified over an Asp-Cys-Glu cysteine residue, allowing for subsequent small-molecule conjugation. With this strategy, we build molecule-protein-protein conjugates with complete chemical control over the sites of modification.


Assuntos
COVID-19 , Anticorpos de Domínio Único , Cisteína/química , Humanos , Proteínas/química , SARS-CoV-2
16.
J Am Chem Soc ; 144(23): 10396-10406, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35658467

RESUMO

Protein conjugates are valuable tools for studying biological processes or producing therapeutics, such as antibody-drug conjugates. Despite the development of several protein conjugation strategies in recent years, the ability to modify one specific amino acid residue on a protein in the presence of other reactive side chains remains a challenge. We show that monosubstituted cyclopropenone (CPO) reagents react selectively with the 1,2-aminothiol groups of N-terminal cysteine residues to give a stable 1,4-thiazepan-5-one linkage under mild, biocompatible conditions. The CPO-based reagents, all accessible from a common activated ester CPO-pentafluorophenol (CPO-PFP), allow selective modification of N-terminal cysteine-containing peptides and proteins even in the presence of internal, solvent-exposed cysteine residues. This approach enabled the preparation of a dual protein conjugate of 2×cys-GFP, containing both internal and N-terminal cysteine residues, by first modifying the N-terminal residue with a CPO-based reagent followed by modification of the internal cysteine with a traditional cysteine-modifying reagent. CPO-based reagents enabled a copper-free click reaction between two proteins, producing a dimer of a de novo protein mimic of IL2 that binds to the ß-IL2 receptor with low nanomolar affinity. Importantly, the reagents are compatible with the common reducing agent dithiothreitol (DTT), a useful property for working with proteins prone to dimerization. Finally, quantum mechanical calculations uncover the origin of selectivity for CPO-based reagents for N-terminal cysteine residues. The ability to distinguish and specifically target N-terminal cysteine residues on proteins facilitates the construction of elaborate multilabeled bioconjugates with minimal protein engineering.


Assuntos
Cisteína , Proteínas , Ciclopropanos , Cisteína/química , Indicadores e Reagentes , Proteínas/química
17.
J Am Chem Soc ; 144(12): 5284-5294, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35293206

RESUMO

Antibody-drug conjugates (ADCs) are a class of targeted therapeutics used to selectively kill cancer cells. It is important that they remain intact in the bloodstream and release their payload in the target cancer cell for maximum efficacy and minimum toxicity. The development of effective ADCs requires the study of factors that can alter the stability of these therapeutics at the atomic level. Here, we present a general strategy that combines synthesis, bioconjugation, linker technology, site-directed mutagenesis, and modeling to investigate the influence of the site and microenvironment of the trastuzumab antibody on the stability of the conjugation and linkers. Trastuzumab is widely used to produce targeted ADCs because it can target with high specificity a receptor that is overexpressed in certain breast cancer cells (HER2). We show that the chemical environment of the conjugation site of trastuzumab plays a key role in the stability of linkers featuring acid-sensitive groups such as acetals. More specifically, Lys-207, located near the reactive Cys-205 of a thiomab variant of the antibody, may act as an acid catalyst and promote the hydrolysis of acetals. Mutation of Lys-207 into an alanine or using a longer linker that separates this residue from the acetal group stabilizes the conjugates. Analogously, Lys-207 promotes the beneficial hydrolysis of the succinimide ring when maleimide reagents are used for conjugation, thus stabilizing the subsequent ADCs by impairing the undesired retro-Michael reactions. This work provides new insights for the design of novel ADCs with improved stability properties.


Assuntos
Antineoplásicos , Imunoconjugados , Acetais , Antineoplásicos/química , Antineoplásicos/farmacologia , Imunoconjugados/química , Maleimidas/química , Mutação , Compostos de Sulfidrila/química , Trastuzumab/química
18.
Angew Chem Int Ed Engl ; 61(8): e202113519, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-34739737

RESUMO

Owing to their bioorthogonality, transition metals have become very popular in the development of biocompatible bond-cleavage reactions. However, many approaches require design and synthesis of complex ligands or formulation of nanoparticles which often perform poorly in living cells. This work reports on a method for the generation of an active palladium species that triggers bond-cleaving reactions inside living cells. We utilized the water-soluble Na2 PdCl4 as a simple source of PdII which can be intracellularly reduced by sodium ascorbate to the active Pd0 species. Once generated, Pd0 triggers the cleavage of allyl ether and carbamate caging groups leading to the release of biologically active molecules. These findings do not only expand the toolbox of available bioorthogonal dissociative reactions but also provide an additional strategy for controlling the reactivity of Pd species involved in Pd-mediated bioorthogonal reactions.


Assuntos
Ácido Ascórbico/química , Materiais Biocompatíveis/química , Paládio/química , Estrutura Molecular , Nanopartículas/química
19.
Angew Chem Int Ed Engl ; 61(46): e202208543, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36124857

RESUMO

Post-translational modifications of histones are essential in the regulation of chromatin structure and function. Among these modifications, lysine acetylation is one of the most established. Earlier studies relied on the use of chromatin containing heterogeneous mixtures of histones acetylated at multiple sites. Differentiating the individual contribution of single acetylation events towards chromatin regulation is thus of great relevance. However, it is difficult to access homogeneous samples of histones, with a single acetylation, in sufficient quantities for such studies. By engineering histone H3 with a cysteine in proximity of the lysine of interest, we demonstrate that conjugation with maleimide-DBCO followed by a strain-promoted alkyne-azide cycloaddition reaction results in the acetylation of a single lysine in a controlled, site-specific manner. The chemical precision offered by our click-to-acetylate approach will facilitate access to and the study of acetylated histones.


Assuntos
Histonas , Lisina , Histonas/química , Acetilação , Lisina/química , Cisteína , Processamento de Proteína Pós-Traducional , Cromatina
20.
J Am Chem Soc ; 143(40): 16401-16410, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34606279

RESUMO

Biomimetics is a design principle within chemistry, biology, and engineering, but chemistry biomimetic approaches have been generally limited to emulating nature's chemical toolkit while emulation of nature's physical toolkit has remained largely unexplored. To begin to explore this, we designed biophysically mimetic microfluidic reactors with characteristic length scales and shear stresses observed within capillaries. We modeled the effect of shear with molecular dynamics studies and showed that this induces specific normally buried residues to become solvent accessible. We then showed using kinetics experiments that rates of reaction of these specific residues in fact increase in a shear-dependent fashion. We applied our results in the creation of a new microfluidic approach for the multidimensional study of cysteine biomarkers. Finally, we used our approach to establish dissociation of the therapeutic antibody trastuzumab in a reducing environment. Our results have implications for the efficacy of existing therapeutic antibodies in blood plasma as well as suggesting in general that biophysically mimetic chemistry is exploited in biology and should be explored as a research area.


Assuntos
Biomimética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA