RESUMO
Medical genetics typically entails the detailed characterization of a patient's phenotypes followed by genotyping to discover the responsible gene or mutation. Here, we propose that the systematic discovery of genetic variants associated with complex diseases such as autism are progressing to a point where a reverse strategy may be fruitful in assigning the pathogenic effects of many different genes and in determining whether particular genotypes manifest as clinically recognizable phenotypes. This "genotype-first" approach for complex disease necessitates the development of large, highly integrated networks of researchers, clinicians, and patient families, with the promise of improved therapies for subsets of patients.
Assuntos
Transtorno Autístico/genética , Heterogeneidade Genética , Genótipo , Transtorno Autístico/classificação , Transtorno Autístico/diagnóstico , Redes Comunitárias , Exoma , Humanos , Mutação , FenótipoRESUMO
Autism spectrum disorder (ASD) is a heterogeneous disease in which efforts to define subtypes behaviorally have met with limited success. Hypothesizing that genetically based subtype identification may prove more productive, we resequenced the ASD-associated gene CHD8 in 3,730 children with developmental delay or ASD. We identified a total of 15 independent mutations; no truncating events were identified in 8,792 controls, including 2,289 unaffected siblings. In addition to a high likelihood of an ASD diagnosis among patients bearing CHD8 mutations, characteristics enriched in this group included macrocephaly, distinct faces, and gastrointestinal complaints. chd8 disruption in zebrafish recapitulates features of the human phenotype, including increased head size as a result of expansion of the forebrain/midbrain and impairment of gastrointestinal motility due to a reduction in postmitotic enteric neurons. Our findings indicate that CHD8 disruptions define a distinct ASD subtype and reveal unexpected comorbidities between brain development and enteric innervation.
Assuntos
Transtornos Globais do Desenvolvimento Infantil/genética , Transtornos Globais do Desenvolvimento Infantil/fisiopatologia , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética , Adolescente , Sequência de Aminoácidos , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Criança , Transtornos Globais do Desenvolvimento Infantil/classificação , Transtornos Globais do Desenvolvimento Infantil/patologia , Pré-Escolar , Proteínas de Ligação a DNA/metabolismo , Feminino , Trato Gastrointestinal/inervação , Trato Gastrointestinal/fisiopatologia , Humanos , Macaca mulatta , Masculino , Megalencefalia/patologia , Dados de Sequência Molecular , Mutação , Alinhamento de Sequência , Fatores de Transcrição/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismoRESUMO
Autism spectrum disorder (ASD) is often grouped with other brain-related phenotypes into a broader category of neurodevelopmental disorders (NDDs). In clinical practice, providers need to decide which genes to test in individuals with ASD phenotypes, which requires an understanding of the level of evidence for individual NDD genes that supports an association with ASD. Consensus is currently lacking about which NDD genes have sufficient evidence to support a relationship to ASD. Estimates of the number of genes relevant to ASD differ greatly among research groups and clinical sequencing panels, varying from a few to several hundred. This Roadmap discusses important considerations necessary to provide an evidence-based framework for the curation of NDD genes based on the level of information supporting a clinically relevant relationship between a given gene and ASD.
Assuntos
Transtorno do Espectro Autista/genética , Medicina Baseada em Evidências/métodos , Estudos de Associação Genética/métodos , Encéfalo/crescimento & desenvolvimento , Cognição/fisiologia , Humanos , Deficiência Intelectual/genéticaRESUMO
The number of de novo mutations (DNMs) in the human germline is correlated with parental age at conception, but this explains only part of the observed variation. We investigated whether there is a family-specific contribution to the number of DNMs in offspring. The analysis of DNMs in 111 dizygotic twin pairs did not identify a substantial family-specific contribution. This result was corroborated by comparing DNMs of 1669 siblings to those of age-matched unrelated offspring following correction for parental age. In addition, by modeling DNM data from 1714 multi-offspring families, we estimated that the family-specific contribution explains â¼5.2% of the variation in DNM number. Furthermore, we found no substantial difference between the observed number of DNMs and those predicted by a stochastic Poisson process. We conclude that there is a small family-specific contribution to DNM number and that stochasticity explains a large proportion of variation in DNM counts.
Assuntos
Células Germinativas , Humanos , MutaçãoRESUMO
BACKGROUND: To describe and analyze the real-life refractive, functional and safety outcomes of the Clareon® intraocular lens (IOL) after 3 years. METHODS: Data was collected retrospectively for observational purposes between July 2017 and December 2019 in the ophthalmology department of Desgenettes military hospital in Lyon, France. Eyes that underwent cataract surgery with Claeron® implantation were consecutively included. Patients with a systemic or ocular condition that could affect the visual outcome were excluded. Postoperative corrected (CDVA) and uncorrected (UDVA) distance visual acuities as well as capsule and IOL transparency were assessed at 1 month and 3 years. RESULTS: A total of 326 eyes were analyzed at one month and 191 eyes were reassessed at the 3-year follow-up visit. At 3 years, the mean CDVA was 0.003 LogMAR (95% confidence interval [CI]: -0.003 to -0.01) and the mean UDVA was 0.075 (95% CI: 0.054 to 0.095). Three quarters of the patients had an UDVA ≥ 0.097 logMAR (20/25 Snellen equivalent) and 50% had an UDVA ≥ 0 (20/20). The absence of glistening was reported in 95.3% of cases and 4.7% [9] of patients experienced a clinically significant posterior capsular opacification (PCO) for which Nd:YAG treatment was required. CONCLUSIONS: This real-life study reports high-performance and stable long-term refractive outcomes of the Clareon® IOL with good safety in terms of PCO and glistening.
Assuntos
Opacificação da Cápsula , Extração de Catarata , Lentes Intraoculares , Facoemulsificação , Humanos , Implante de Lente Intraocular , Estudos Retrospectivos , Acuidade Visual , Refração Ocular , Desenho de PróteseRESUMO
Despite evidence that deleterious variants in the same genes are implicated across multiple neurodevelopmental and neuropsychiatric disorders, there has been considerable interest in identifying genes that, when mutated, confer risk that is largely specific for autism spectrum disorder (ASD). Here, we review the findings and limitations of recent efforts to identify relatively "autism-specific" genes, efforts which focus on rare variants of large effect size that are thought to account for the observed phenotypes. We present a divergent interpretation of published evidence; discuss practical and theoretical issues related to studying the relationships between rare, large-effect deleterious variants and neurodevelopmental phenotypes; and describe potential future directions of this research. We argue that there is currently insufficient evidence to establish meaningful ASD specificity of any genes based on large-effect rare-variant data.
Assuntos
Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/genética , Incerteza , Estudos de Coortes , Testes Genéticos , Genótipo , Humanos , Reprodutibilidade dos TestesRESUMO
Helsmoortel-Van der Aa syndrome (HVDAS) is a neurodevelopmental condition associated with intellectual disability/developmental delay, autism spectrum disorder, and multiple medical comorbidities. HVDAS is caused by mutations in activity-dependent neuroprotective protein (ADNP). A recent study identified genome-wide DNA methylation changes in 22 individuals with HVDAS, adding to the group of neurodevelopmental disorders with an epigenetic signature. This methylation signature segregated those with HVDAS into two groups based on the location of the mutations. Here, we conducted an independent study on 24 individuals with HVDAS and replicated the existence of the two mutation-dependent episignatures. To probe whether the two distinct episignatures correlate with clinical outcomes, we used deep behavioral and neurobiological data from two prospective cohorts of individuals with a genetic diagnosis of HVDAS. We found limited phenotypic differences between the two HVDAS-affected groups and no evidence that individuals with more widespread methylation changes are more severely affected. Moreover, in spite of the methylation changes, we observed no profound alterations in the blood transcriptome of individuals with HVDAS. Our data warrant caution in harnessing methylation signatures in HVDAS as a tool for clinical stratification, at least with regard to behavioral phenotypes.
Assuntos
Transtorno do Espectro Autista/genética , Proteínas de Homeodomínio/genética , Deficiência Intelectual/genética , Proteínas do Tecido Nervoso/genética , Transtornos do Neurodesenvolvimento/genética , Transtorno do Espectro Autista/patologia , Criança , Metilação de DNA/genética , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Epigênese Genética/genética , Feminino , Humanos , Deficiência Intelectual/patologia , Masculino , Mutação/genética , Transtornos do Neurodesenvolvimento/patologia , Fenótipo , Transcriptoma/genéticaRESUMO
The biological mechanisms underlying the greater prevalence of autism spectrum disorder in males than females remain poorly understood. One hypothesis posits that this female protective effect arises from genetic load for autism spectrum disorder differentially impacting male and female brains. To test this hypothesis, we investigated the impact of cumulative genetic risk for autism spectrum disorder on functional brain connectivity in a balanced sample of boys and girls with autism spectrum disorder and typically developing boys and girls (127 youth, ages 8-17). Brain connectivity analyses focused on the salience network, a core intrinsic functional connectivity network which has previously been implicated in autism spectrum disorder. The effects of polygenic risk on salience network functional connectivity were significantly modulated by participant sex, with genetic load for autism spectrum disorder influencing functional connectivity in boys with and without autism spectrum disorder but not girls. These findings support the hypothesis that autism spectrum disorder risk genes interact with sex differential processes, thereby contributing to the male bias in autism prevalence and proposing an underlying neurobiological mechanism for the female protective effect.
Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Adolescente , Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , Encéfalo , Mapeamento Encefálico , Criança , Feminino , Humanos , Imageamento por Ressonância Magnética , MasculinoRESUMO
Autistic and comparison individuals differ in resting-state electroencephalography (EEG), such that sex and age explain variability within and between groups. Pubertal maturation and timing may further explain variation, as previous work has suggested alterations in pubertal timing in autistic youth. In a sample from two studies of 181 autistic and 94 comparison youth (8 years to 17 years and 11 months), mixed-effects linear regressions were conducted to assess differences in EEG (midline power for theta, alpha, and beta frequency bands). Alpha power was analyzed as a mediator in the relation between pubertal maturation and timing with autistic traits in the autistic groups to understand the role of puberty in brain-based changes that contribute to functional outcomes. Individuals advanced in puberty exhibited decreased power in all bands. Those who experienced puberty relatively early showed decreased power in theta and beta bands, controlling for age, sex, and diagnosis. Autistic individuals further along in pubertal development exhibited lower social skills. Alpha mediated the relation between puberty and repetitive behaviors. Pubertal maturation and timing appear to play unique roles in the development of cognitive processes for autistic and comparison youth and should be considered in research on developmental variation in resting-state EEG.
Assuntos
Transtorno Autístico , Humanos , Adolescente , Eletroencefalografia , Encéfalo , Puberdade , Habilidades SociaisRESUMO
Importance: In the US, children with signs of autism often experience more than 1 year of delay before diagnosis and often experience longer delays if they are from racially, ethnically, or economically disadvantaged backgrounds. Most diagnoses are also received without use of standardized diagnostic instruments. To aid in early autism diagnosis, eye-tracking measurement of social visual engagement has shown potential as a performance-based biomarker. Objective: To evaluate the performance of eye-tracking measurement of social visual engagement (index test) relative to expert clinical diagnosis in young children referred to specialty autism clinics. Design, Setting, and Participants: In this study of 16- to 30-month-old children enrolled at 6 US specialty centers from April 2018 through May 2019, staff blind to clinical diagnoses used automated devices to measure eye-tracking-based social visual engagement. Expert clinical diagnoses were made using best practice standardized protocols by specialists blind to index test results. This study was completed in a 1-day protocol for each participant. Main Outcomes and Measures: Primary outcome measures were test sensitivity and specificity relative to expert clinical diagnosis. Secondary outcome measures were test correlations with expert clinical assessments of social disability, verbal ability, and nonverbal cognitive ability. Results: Eye-tracking measurement of social visual engagement was successful in 475 (95.2%) of the 499 enrolled children (mean [SD] age, 24.1 [4.4] months; 38 [8.0%] were Asian; 37 [7.8%], Black; 352 [74.1%], White; 44 [9.3%], other; and 68 [14.3%], Hispanic). By expert clinical diagnosis, 221 children (46.5%) had autism and 254 (53.5%) did not. In all children, measurement of social visual engagement had sensitivity of 71.0% (95% CI, 64.7% to 76.6%) and specificity of 80.7% (95% CI, 75.4% to 85.1%). In the subgroup of 335 children whose autism diagnosis was certain, sensitivity was 78.0% (95% CI, 70.7% to 83.9%) and specificity was 85.4% (95% CI, 79.5% to 89.8%). Eye-tracking test results correlated with expert clinical assessments of individual levels of social disability (r = -0.75 [95% CI, -0.79 to -0.71]), verbal ability (r = 0.65 [95% CI, 0.59 to 0.70]), and nonverbal cognitive ability (r = 0.65 [95% CI, 0.59 to 0.70]). Conclusions and Relevance: In 16- to 30-month-old children referred to specialty clinics, eye-tracking-based measurement of social visual engagement was predictive of autism diagnoses by clinical experts. Further evaluation of this test's role in early diagnosis and assessment of autism in routine specialty clinic practice is warranted. Trial Registration: ClinicalTrials.gov Identifier: NCT03469986.
Assuntos
Transtorno Autístico , Tecnologia de Rastreamento Ocular , Comportamento Social , Percepção Visual , Pré-Escolar , Humanos , Lactente , Instituições de Assistência Ambulatorial , Asiático , Transtorno Autístico/diagnóstico , Transtorno Autístico/fisiopatologia , Transtorno Autístico/psicologia , Movimentos Oculares/fisiologiaRESUMO
While genes with an excess of de novo mutations (DNMs) have been identified in children with neurodevelopmental disorders (NDDs), few studies focus on DNM patterns where the sex of affected children is examined separately. We considered â¼8,825 sequenced parent-child trios (n â¼26,475 individuals) and identify 54 genes with a DNM enrichment in males (n = 18), females (n = 17), or overlapping in both the male and female subsets (n = 19). A replication cohort of 18,778 sequenced parent-child trios (n = 56,334 individuals) confirms 25 genes (n = 3 in males, n = 7 in females, n = 15 in both male and female subsets). As expected, we observe significant enrichment on the X chromosome for females but also find autosomal genes with potential sex bias (females, CDK13, ITPR1; males, CHD8, MBD5, SYNGAP1); 6.5% of females harbor a DNM in a female-enriched gene, whereas 2.7% of males have a DNM in a male-enriched gene. Sex-biased genes are enriched in transcriptional processes and chromatin binding, primarily reside in the nucleus of cells, and have brain expression. By downsampling, we find that DNM gene discovery is greatest when studying affected females. Finally, directly comparing de novo allele counts in NDD-affected males and females identifies one replicated genome-wide significant gene (DDX3X) with locus-specific enrichment in females. Our sex-based DNM enrichment analysis identifies candidate NDD genes differentially affecting males and females and indicates that the study of females with NDDs leads to greater gene discovery consistent with the female-protective effect.
Assuntos
Exoma/genética , Marcadores Genéticos , Mutação , Transtornos do Neurodesenvolvimento/genética , Criança , Estudos de Coortes , Feminino , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Humanos , Masculino , Transtornos do Neurodesenvolvimento/patologia , Fenótipo , Fatores SexuaisRESUMO
Human-specific duplications at chromosome 16p11.2 mediate recurrent pathogenic 600 kbp BP4-BP5 copy-number variations, which are among the most common genetic causes of autism. These copy-number polymorphic duplications are under positive selection and include three to eight copies of BOLA2, a gene involved in the maturation of cytosolic iron-sulfur proteins. To investigate the potential advantage provided by the rapid expansion of BOLA2, we assessed hematological traits and anemia prevalence in 379,385 controls and individuals who have lost or gained copies of BOLA2: 89 chromosome 16p11.2 BP4-BP5 deletion carriers and 56 reciprocal duplication carriers in the UK Biobank. We found that the 16p11.2 deletion is associated with anemia (18/89 carriers, 20%, p = 4e-7, OR = 5), particularly iron-deficiency anemia. We observed similar enrichments in two clinical 16p11.2 deletion cohorts, which included 6/63 (10%) and 7/20 (35%) unrelated individuals with anemia, microcytosis, low serum iron, or low blood hemoglobin. Upon stratification by BOLA2 copy number, our data showed an association between low BOLA2 dosage and the above phenotypes (8/15 individuals with three copies, 53%, p = 1e-4). In parallel, we analyzed hematological traits in mice carrying the 16p11.2 orthologous deletion or duplication, as well as Bola2+/- and Bola2-/- animals. The Bola2-deficient mice and the mice carrying the deletion showed early evidence of iron deficiency, including a mild decrease in hemoglobin, lower plasma iron, microcytosis, and an increased red blood cell zinc-protoporphyrin-to-heme ratio. Our results indicate that BOLA2 participates in iron homeostasis in vivo, and its expansion has a potential adaptive role in protecting against iron deficiency.
Assuntos
Anemia/genética , Transtorno Autístico/genética , Duplicação Cromossômica/genética , Cromossomos Humanos Par 16/genética , Homeostase/genética , Proteínas/genética , Animais , Deleção Cromossômica , Transtornos Cromossômicos/genética , Variações do Número de Cópias de DNA/genética , Feminino , Genótipo , Heterozigoto , Humanos , Ferro , Masculino , FenótipoRESUMO
BACKGROUND: Previous research in autism and other neurodevelopmental disorders (NDDs) has indicated an important contribution of protein-coding (coding) de novo variants (DNVs) within specific genes. The role of de novo noncoding variation has been observable as a general increase in genetic burden but has yet to be resolved to individual functional elements. In this study, we assessed whole-genome sequencing data in 2671 families with autism (discovery cohort of 516 families, replication cohort of 2155 families). We focused on DNVs in enhancers with characterized in vivo activity in the brain and identified an excess of DNVs in an enhancer named hs737. RESULTS: We adapted the fitDNM statistical model to work in noncoding regions and tested enhancers for excess of DNVs in families with autism. We found only one enhancer (hs737) with nominal significance in the discovery (p = 0.0172), replication (p = 2.5 × 10-3), and combined dataset (p = 1.1 × 10-4). Each individual with a DNV in hs737 had shared phenotypes including being male, intact cognitive function, and hypotonia or motor delay. Our in vitro assessment of the DNVs showed they all reduce enhancer activity in a neuronal cell line. By epigenomic analyses, we found that hs737 is brain-specific and targets the transcription factor gene EBF3 in human fetal brain. EBF3 is genome-wide significant for coding DNVs in NDDs (missense p = 8.12 × 10-35, loss-of-function p = 2.26 × 10-13) and is widely expressed in the body. Through characterization of promoters bound by EBF3 in neuronal cells, we saw enrichment for binding to NDD genes (p = 7.43 × 10-6, OR = 1.87) involved in gene regulation. Individuals with coding DNVs have greater phenotypic severity (hypotonia, ataxia, and delayed development syndrome [HADDS]) in comparison to individuals with noncoding DNVs that have autism and hypotonia. CONCLUSIONS: In this study, we identify DNVs in the hs737 enhancer in individuals with autism. Through multiple approaches, we find hs737 targets the gene EBF3 that is genome-wide significant in NDDs. By assessment of noncoding variation and the genes they affect, we are beginning to understand their impact on gene regulatory networks in NDDs.
Assuntos
Transtorno Autístico/genética , Predisposição Genética para Doença , Hipotonia Muscular/genética , Transtornos do Neurodesenvolvimento/genética , Fatores de Transcrição/genética , Transtorno Autístico/epidemiologia , Transtorno Autístico/patologia , Elementos Facilitadores Genéticos/genética , Exoma/genética , Feminino , Redes Reguladoras de Genes/genética , Humanos , Masculino , Hipotonia Muscular/epidemiologia , Hipotonia Muscular/patologia , Mutação/genética , Transtornos do Neurodesenvolvimento/epidemiologia , Transtornos do Neurodesenvolvimento/patologia , Neurônios/metabolismo , Neurônios/patologiaRESUMO
Females versus males are less frequently diagnosed with autism spectrum disorder (ASD), and while understanding sex differences is critical to delineating the systems biology of the condition, female ASD is understudied. We integrated functional MRI and genetic data in a sex-balanced sample of ASD and typically developing youth (8-17 years old) to characterize female-specific pathways of ASD risk. Our primary objectives were to: (i) characterize female ASD (n = 45) brain response to human motion, relative to matched typically developing female youth (n = 45); and (ii) evaluate whether genetic data could provide further insight into the potential relevance of these brain functional differences. For our first objective we found that ASD females showed markedly reduced response versus typically developing females, particularly in sensorimotor, striatal, and frontal regions. This difference between ASD and typically developing females does not resemble differences between ASD (n = 47) and typically developing males (n = 47), even though neural response did not significantly differ between female and male ASD. For our second objective, we found that ASD females (n = 61), versus males (n = 66), showed larger median size of rare copy number variants containing gene(s) expressed in early life (10 postconceptual weeks to 2 years) in regions implicated by the typically developing female > female functional MRI contrast. Post hoc analyses suggested this difference was primarily driven by copy number variants containing gene(s) expressed in striatum. This striatal finding was reproducible among n = 2075 probands (291 female) from an independent cohort. Together, our findings suggest that striatal impacts may contribute to pathways of risk in female ASD and advocate caution in drawing conclusions regarding female ASD based on male-predominant cohorts.
Assuntos
Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/fisiopatologia , Caracteres Sexuais , Adolescente , Criança , Corpo Estriado/metabolismo , Corpo Estriado/fisiopatologia , Variações do Número de Cópias de DNA , Feminino , Genótipo , Humanos , Imageamento por Ressonância Magnética , Masculino , Neuroimagem/métodosRESUMO
A prominent hypothesis regarding the pathophysiology of autism is that an increase in the balance between neural excitation and inhibition results in an increase in neural responses. However, previous reports of population-level response magnitude in individuals with autism have been inconsistent. Critically, network interactions have not been considered in previous neuroimaging studies of excitation and inhibition imbalance in autism. In particular, a defining characteristic of cortical organization is its hierarchical and interactive structure; sensory and cognitive systems are comprised of networks where later stages inherit and build upon the processing of earlier input stages, and also influence and shape earlier stages by top-down modulation. Here we used the well established connections of the human visual system to examine response magnitudes in a higher-order motion processing region [middle temporal area (MT+)] and its primary input region (V1). Simple visual stimuli were presented to adult individuals with autism spectrum disorders (ASD; n = 24, mean age 23 years, 8 females) and neurotypical controls (n = 24, mean age 22, 8 females) during fMRI scanning. We discovered a strong dissociation of fMRI response magnitude between region MT+ and V1 in individuals with ASD: individuals with high MT+ responses had attenuated V1 responses. The magnitude of MT+ amplification and of V1 attenuation was associated with autism severity, appeared to result from amplified suppressive feedback from MT+ to V1, and was not present in neurotypical controls. Our results reveal the potential role of altered hierarchical network interactions in the pathophysiology of ASD.SIGNIFICANCE STATEMENT An imbalance between neural excitation and inhibition, resulting in increased neural responses, has been suggested as a pathophysiological pathway to autism, but direct evidence from humans is lacking. In the current study we consider the role of interactions between stages of sensory processing when testing increased neural responses in individuals with autism. We used the well known hierarchical structure of the visual motion pathway to demonstrate dissociation in the fMRI response magnitude between adjacent stages of processing in autism: responses are attenuated in a primary visual area but amplified in a subsequent higher-order area. This response dissociation appears to rely on enhanced suppressive feedback between regions and reveals a previously unknown cortical network alteration in autism.
Assuntos
Percepção de Movimento/fisiologia , Rede Nervosa/fisiopatologia , Lobo Temporal/fisiopatologia , Adulto , Transtorno do Espectro Autista/fisiopatologia , Mapeamento Encefálico , Movimentos Oculares/fisiologia , Feminino , Movimentos da Cabeça/fisiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Inibição Neural/fisiologia , Estimulação Luminosa , Desempenho Psicomotor/fisiologia , Adulto JovemRESUMO
N-alpha-acetylation is one of the most common co-translational protein modifications in humans and is essential for normal cell function. NAA10 encodes for the enzyme NAA10, which is the catalytic subunit in the N-terminal acetyltransferase A (NatA) complex. The auxiliary and regulatory subunits of the NatA complex are NAA15 and Huntington-interacting protein (HYPK), respectively. Through a genotype-first approach with exome sequencing, we identified and phenotypically characterized 30 individuals from 30 unrelated families with 17 different de novo or inherited, dominantly acting missense variants in NAA10 or NAA15. Clinical features of affected individuals include variable levels of intellectual disability, delayed speech and motor milestones and autism spectrum disorder. Additionally, some subjects present with mild craniofacial dysmorphology, congenital cardiac anomalies and seizures. One of the individuals is an 11-year-old boy with a frameshift variant in exon 7 of NAA10, who presents most notably with microphthalmia, which confirms a prior finding with a single family with Lenz microphthalmia syndrome. Biochemical analyses of variants as part of the human NatA complex, as well as enzymatic analyses with and without the HYPK regulatory subunit, help to explain some of the phenotypic differences seen among the different variants.
Assuntos
Biomarcadores , Estudos de Associação Genética , Predisposição Genética para Doença , Variação Genética , Acetiltransferase N-Terminal A/genética , Acetiltransferase N-Terminal E/genética , Fenótipo , Adolescente , Adulto , Alelos , Criança , Pré-Escolar , Biologia Computacional/métodos , Ativação Enzimática , Estabilidade Enzimática , Fácies , Feminino , Loci Gênicos , Testes Genéticos , Genótipo , Humanos , Lactente , Masculino , Modelos Moleculares , Mutação , Acetiltransferase N-Terminal A/química , Acetiltransferase N-Terminal A/metabolismo , Acetiltransferase N-Terminal E/química , Acetiltransferase N-Terminal E/metabolismo , Conformação Proteica , Proteínas Recombinantes , Relação Estrutura-Atividade , Adulto JovemRESUMO
N-alpha-acetylation is a common co-translational protein modification that is essential for normal cell function in humans. We previously identified the genetic basis of an X-linked infantile lethal Mendelian disorder involving a c.109T>C (p.Ser37Pro) missense variant in NAA10, which encodes the catalytic subunit of the N-terminal acetyltransferase A (NatA) complex. The auxiliary subunit of the NatA complex, NAA15, is the dimeric binding partner for NAA10. Through a genotype-first approach with whole-exome or genome sequencing (WES/WGS) and targeted sequencing analysis, we identified and phenotypically characterized 38 individuals from 33 unrelated families with 25 different de novo or inherited, dominantly acting likely gene disrupting (LGD) variants in NAA15. Clinical features of affected individuals with LGD variants in NAA15 include variable levels of intellectual disability, delayed speech and motor milestones, and autism spectrum disorder. Additionally, mild craniofacial dysmorphology, congenital cardiac anomalies, and seizures are present in some subjects. RNA analysis in cell lines from two individuals showed degradation of the transcripts with LGD variants, probably as a result of nonsense-mediated decay. Functional assays in yeast confirmed a deleterious effect for two of the LGD variants in NAA15. Further supporting a mechanism of haploinsufficiency, individuals with copy-number variant (CNV) deletions involving NAA15 and surrounding genes can present with mild intellectual disability, mild dysmorphic features, motor delays, and decreased growth. We propose that defects in NatA-mediated N-terminal acetylation (NTA) lead to variable levels of neurodevelopmental disorders in humans, supporting the importance of the NatA complex in normal human development.
Assuntos
Anormalidades Múltiplas/genética , Transtorno do Espectro Autista/genética , Predisposição Genética para Doença , Variação Genética , Deficiência Intelectual/genética , Acetiltransferase N-Terminal A/genética , Acetiltransferase N-Terminal E/genética , Adolescente , Adulto , Linhagem Celular , Criança , Éxons/genética , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Acetiltransferase N-Terminal A/metabolismo , Acetiltransferase N-Terminal E/metabolismo , Linhagem , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/metabolismoRESUMO
Autism spectrum disorder (ASD) is associated with the altered functional connectivity of 3 neurocognitive networks that are hypothesized to be central to the symptomatology of ASD: the salience network (SN), default mode network (DMN), and central executive network (CEN). Due to the considerably higher prevalence of ASD in males, however, previous studies examining these networks in ASD have used primarily male samples. It is thus unknown how these networks may be differentially impacted among females with ASD compared to males with ASD, and how such differences may compare to those observed in neurotypical individuals. Here, we investigated the functional connectivity of the SN, DMN, and CEN in a large, well-matched sample of girls and boys with and without ASD (169 youth, ages 8-17). Girls with ASD displayed greater functional connectivity between the DMN and CEN than boys with ASD, whereas typically developing girls and boys differed in SN functional connectivity only. Together, these results demonstrate that youth with ASD exhibit altered sex differences in these networks relative to what is observed in typical development, and highlight the importance of considering sex-related biological factors and participant sex when characterizing the neural mechanisms underlying ASD.
Assuntos
Transtorno do Espectro Autista/fisiopatologia , Encéfalo/fisiopatologia , Vias Neurais/fisiopatologia , Caracteres Sexuais , Adolescente , Mapeamento Encefálico/métodos , Criança , Feminino , Humanos , Imageamento por Ressonância Magnética , MasculinoRESUMO
The bromodomain adjacent to zinc finger 2B gene (BAZ2B) encodes a protein involved in chromatin remodeling. Loss of BAZ2B function has been postulated to cause neurodevelopmental disorders. To determine whether BAZ2B deficiency is likely to contribute to the pathogenesis of these disorders, we performed bioinformatics analyses that demonstrated a high level of functional convergence during fetal cortical development between BAZ2B and genes known to cause autism spectrum disorder (ASD) and neurodevelopmental disorder. We also found an excess of de novo BAZ2B loss-of-function variants in exome sequencing data from previously published cohorts of individuals with neurodevelopmental disorders. We subsequently identified seven additional individuals with heterozygous deletions, stop-gain, or de novo missense variants affecting BAZ2B. All of these individuals have developmental delay (DD), intellectual disability (ID), and/or ASD. Taken together, our findings suggest that haploinsufficiency of BAZ2B causes a neurodevelopmental disorder, whose cardinal features include DD, ID, and ASD.
Assuntos
Transtorno do Espectro Autista/genética , Predisposição Genética para Doença , Haploinsuficiência , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Fatores Genéricos de Transcrição/genética , Alelos , Substituição de Aminoácidos , Transtorno do Espectro Autista/diagnóstico , Expressão Gênica , Estudos de Associação Genética , Genótipo , Humanos , Deficiência Intelectual/diagnóstico , Transtornos do Neurodesenvolvimento/diagnóstico , Deleção de SequênciaRESUMO
Genetic risk factors for autism spectrum disorder (ASD) have yet to be fully elucidated. Postzygotic mosaic mutations (PMMs) have been implicated in several neurodevelopmental disorders and overgrowth syndromes. By leveraging whole-exome sequencing data on a large family-based ASD cohort, the Simons Simplex Collection, we systematically evaluated the potential role of PMMs in autism risk. Initial re-evaluation of published single-nucleotide variant (SNV) de novo mutations showed evidence consistent with putative PMMs for 11% of mutations. We developed a robust and sensitive SNV PMM calling approach integrating complementary callers, logistic regression modeling, and additional heuristics. In our high-confidence call set, we identified 470 PMMs in children, increasing the proportion of mosaic SNVs to 22%. Probands have a significant burden of synonymous PMMs and these mutations are enriched for computationally predicted impacts on splicing. Evidence of increased missense PMM burden was not seen in the full cohort. However, missense burden signal increased in subcohorts of families where probands lacked nonsynonymous germline mutations, especially in genes intolerant to mutations. Parental mosaic mutations that were transmitted account for 6.8% of the presumed de novo mutations in the children. PMMs were identified in previously implicated high-confidence neurodevelopmental disorder risk genes, such as CHD2, CTNNB1, SCN2A, and SYNGAP1, as well as candidate risk genes with predicted functions in chromatin remodeling or neurodevelopment, including ACTL6B, BAZ2B, COL5A3, SSRP1, and UNC79. We estimate that PMMs potentially contribute risk to 3%-4% of simplex ASD case subjects and future studies of PMMs in ASD and related disorders are warranted.