Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nanotechnology ; 27(39): 395202, 2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27535227

RESUMO

We experimentally demonstrate exchange-coupling between laterally adjacent nanomagnets. Our results show that two neighboring nanomagnets that are each antiferromagnetically exchange-coupled to a common ferromagnetic bottom layer can be brought into strong ferromagnetic interaction. Simulations show that interlayer exchange coupling effectively promotes ferromagnetic alignment between the two nanomagnets, as opposed to antiferromagnetic alignment due to dipole-coupling. In order to experimentally demonstrate the proposed scheme, we fabricated arrays of pairs of elongated, single-domain nanomagnets. Magnetic force microscopy measurements show that most of the pairs are ferromagnetically ordered. The results are in agreement with micromagnetic simulations. The presented scheme can achieve coupling strengths that are significantly stronger than dipole coupling, potentially enabling far-reaching applications in Nanomagnet Logic, spin-wave devices and three-dimensional storage and computing.

2.
J Phys Condens Matter ; 23(5): 053202, 2011 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-21406904

RESUMO

We discuss the experimental demonstration of non-majority, two-input, nanomagnet logic (NML) AND and OR gates. While gate designs still can incorporate the symmetric, rounded-rectangle magnets used in the three-input majority gate experiments by Imre (2006 Science 311 205-8), our new designs also leverage magnets with an edge that has a well-defined 'slant'. In rectangular and ellipsoid nanomagnets, the easy axis of the device coincides with its longer edge. For a magnet with a slanted edge, the easy and hard axes are 'tilted', and magnetic fields applied along the (geometrical) hard axis alone can set the easy axis magnetization state. This switching phenomenon can be employed to realize NML Boolean logic gates with both reduced footprints and critical path delays. Experimental demonstrations of two-input AND and OR gates are supported by corresponding micromagnetic simulations with temperature effects associated with a 300 K environment. Simulations suggest that the time evolution of experimentally demonstrated structures is correct, and that designs can also tolerate clock field misalignment. Additionally, simulations suggest that a slanted-edge 'compute magnet' can (i) be driven by two anti-ferromagnetically ordered lines of NML devices (for input) and (ii) drive an anti-ferromagnetically ordered line (for output). Both are essential if slanted-edge devices are to be used in NML circuits. We conclude with a discussion of extensibility and scaling prospects for shape-based computation with nanomagnets.

3.
J Phys Condens Matter ; 23(49): 493202, 2011 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-22121192

RESUMO

Quoting the International Technology Roadmap for Semiconductors (ITRS) 2009 Emerging Research Devices section, 'Nanomagnetic logic (NML) has potential advantages relative to CMOS of being non-volatile, dense, low-power, and radiation-hard. Such magnetic elements are compatible with MRAM technology, which can provide input­output interfaces. Compatibility with MRAM also promises a natural integration of memory and logic. Nanomagnetic logic also appears to be scalable to the ultimate limit of using individual atomic spins.' This article reviews progress toward complete and reliable NML systems. More specifically, we (i) review experimental progress toward fundamental characteristics a device must possess if it is to be used in a digital system, (ii) consider how the NML design space may impact the system-level energy (especially when considering the clock needed to drive a computation), (iii) explain--using both the NML design space and a discussion of clocking as context­how reliable circuit operation may be achieved, (iv) highlight experimental efforts regarding CMOS friendly clock structures for NML systems, (v) explain how electrical I/O could be achieved, and (vi) conclude with a brief discussion of suitable architectures for this technology. Throughout the article, we attempt to identify important areas for future work.


Assuntos
Magnetismo , Nanotecnologia , Integração de Sistemas
4.
Science ; 311(5758): 205-8, 2006 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-16410520

RESUMO

We describe the operation of, and demonstrate logic functionality in, networks of physically coupled, nanometer-scale magnets designed for digital computation in magnetic quantum-dot cellular automata (MQCA) systems. MQCA offer low power dissipation and high integration density of functional elements and operate at room temperature. The basic MQCA logic gate, that is, the three-input majority logic gate, is demonstrated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA