Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 25(4): 590-591, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38514889
2.
Genes Dev ; 36(11-12): 752-763, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35738678

RESUMO

Self-renewal of spermatogonial stem cells is vital to lifelong production of male gametes and thus fertility. However, the underlying mechanisms remain enigmatic. Here, we show that DOT1L, the sole H3K79 methyltransferase, is required for spermatogonial stem cell self-renewal. Mice lacking DOT1L fail to maintain spermatogonial stem cells, characterized by a sequential loss of germ cells from spermatogonia to spermatids and ultimately a Sertoli cell only syndrome. Inhibition of DOT1L reduces the stem cell activity after transplantation. DOT1L promotes expression of the fate-determining HoxC transcription factors in spermatogonial stem cells. Furthermore, H3K79me2 accumulates at HoxC9 and HoxC10 genes. Our findings identify an essential function for DOT1L in adult stem cells and provide an epigenetic paradigm for regulation of spermatogonial stem cells.


Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Espermatogônias , Células-Tronco , Animais , Diferenciação Celular , Masculino , Camundongos , Espermatogônias/citologia , Espermatogônias/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo
3.
Mol Cell ; 81(11): 2332-2348.e9, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33974912

RESUMO

Meningioma-1 (MN1) overexpression in AML is associated with poor prognosis, and forced expression of MN1 induces leukemia in mice. We sought to determine how MN1 causes AML. We found that overexpression of MN1 can be induced by translocations that result in hijacking of a downstream enhancer. Structure predictions revealed that the entire MN1 coding frame is disordered. We identified the myeloid progenitor-specific BAF complex as the key interaction partner of MN1. MN1 over-stabilizes BAF on enhancer chromatin, a function directly linked to the presence of a long polyQ-stretch within MN1. BAF over-stabilization at binding sites of transcription factors regulating a hematopoietic stem/progenitor program prevents the developmentally appropriate decommissioning of these enhancers and results in impaired myeloid differentiation and leukemia. Beyond AML, our data detail how the overexpression of a polyQ protein, in the absence of any coding sequence mutation, can be sufficient to cause malignant transformation.


Assuntos
Carcinogênese/genética , DNA Helicases/genética , Proteínas Intrinsicamente Desordenadas/genética , Leucemia Mieloide Aguda/genética , Proteínas Nucleares/genética , Transativadores/genética , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Animais , Sequência de Bases , Carcinogênese/metabolismo , Carcinogênese/patologia , Linhagem Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Cromatina/patologia , DNA Helicases/metabolismo , Elementos Facilitadores Genéticos , Feminino , Regulação Leucêmica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Proteínas Intrinsicamente Desordenadas/metabolismo , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/mortalidade , Leucemia Mieloide Aguda/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Nucleares/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Mapeamento de Interação de Proteínas , Estabilidade Proteica , Transporte Proteico , Transdução de Sinais , Análise de Sobrevida , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo
4.
Mol Cell ; 81(17): 3604-3622.e10, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34358447

RESUMO

The transformed state in acute leukemia requires gene regulatory programs involving transcription factors and chromatin modulators. Here, we uncover an IRF8-MEF2D transcriptional circuit as an acute myeloid leukemia (AML)-biased dependency. We discover and characterize the mechanism by which the chromatin "reader" ZMYND8 directly activates IRF8 in parallel with the MYC proto-oncogene through their lineage-specific enhancers. ZMYND8 is essential for AML proliferation in vitro and in vivo and associates with MYC and IRF8 enhancer elements that we define in cell lines and in patient samples. ZMYND8 occupancy at IRF8 and MYC enhancers requires BRD4, a transcription coactivator also necessary for AML proliferation. We show that ZMYND8 binds to the ET domain of BRD4 via its chromatin reader cassette, which in turn is required for proper chromatin occupancy and maintenance of leukemic growth in vivo. Our results rationalize ZMYND8 as a potential therapeutic target for modulating essential transcriptional programs in AML.


Assuntos
Fatores Reguladores de Interferon/metabolismo , Leucemia Mieloide Aguda/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/genética , Cromatina/genética , Elementos Facilitadores Genéticos/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Fatores Reguladores de Interferon/genética , Leucemia Mieloide Aguda/genética , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas/genética , Proto-Oncogene Mas , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética , Proteínas Supressoras de Tumor/genética
5.
Development ; 150(9)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37082953

RESUMO

Histone modifications regulate chromatin remodeling and gene expression in development and diseases. DOT1L, the sole histone H3K79 methyltransferase, is essential for embryonic development. Here, we report that DOT1L regulates male fertility in mouse. DOT1L associates with MLLT10 in testis. DOT1L and MLLT10 localize to the sex chromatin in meiotic and post-meiotic germ cells in an inter-dependent manner. Loss of either DOT1L or MLLT10 leads to reduced testis weight, decreased sperm count and male subfertility. H3K79me2 is abundant in elongating spermatids, which undergo the dramatic histone-to-protamine transition. Both DOT1L and MLLT10 are essential for H3K79me2 modification in germ cells. Strikingly, histones are substantially retained in epididymal sperm from either DOT1L- or MLLT10-deficient mice. These results demonstrate that H3K79 methylation promotes histone replacement during spermiogenesis.


Assuntos
Histonas , Sêmen , Animais , Masculino , Camundongos , Fertilidade , Histona Metiltransferases/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Metilação , Metiltransferases/genética , Sêmen/metabolismo , Espermatogênese/genética , Fatores de Transcrição/metabolismo
6.
Blood ; 139(14): 2198-2211, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-34864916

RESUMO

KMT2A-rearranged (KMT2A-r) infant acute lymphoblastic leukemia (ALL) is a devastating malignancy with a dismal outcome, and younger age at diagnosis is associated with increased risk of relapse. To discover age-specific differences and critical drivers that mediate poor outcome in KMT2A-r ALL, we subjected KMT2A-r leukemias and normal hematopoietic cells from patients of different ages to single-cell multiomics analyses. We uncovered the following critical new insights: leukemia cells from patients <6 months have significantly increased lineage plasticity. Steroid response pathways are downregulated in the most immature blasts from younger patients. We identify a hematopoietic stem and progenitor-like (HSPC-like) population in the blood of younger patients that contains leukemic blasts and form an immunosuppressive signaling circuit with cytotoxic lymphocytes. These observations offer a compelling explanation for the ability of leukemias in young patients to evade chemotherapy and immune-mediated control. Our analysis also revealed preexisting lymphomyeloid primed progenitors and myeloid blasts at initial diagnosis of B-ALL. Tracking of leukemic clones in 2 patients whose leukemia underwent a lineage switch documented the evolution of such clones into frank acute myeloid leukemia (AML). These findings provide critical insights into KMT2A-r ALL and have clinical implications for molecularly targeted and immunotherapy approaches. Beyond infant ALL, our study demonstrates the power of single-cell multiomics to detect tumor intrinsic and extrinsic factors affecting rare but critical subpopulations within a malignant population that ultimately determines patient outcome.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Leucemia-Linfoma Linfoblástico de Células Precursoras , Antineoplásicos/uso terapêutico , Rearranjo Gênico , Humanos , Imunoterapia , Lactente , Leucemia Mieloide Aguda/genética , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
7.
Haematologica ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38572550

RESUMO

Not available.

8.
J Proteome Res ; 20(11): 5203-5211, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34669412

RESUMO

With the rapid developments in mass spectrometry (MS)-based proteomics methods, label-free semiquantitative proteomics has become an increasingly popular tool for profiling global protein abundances in an unbiased manner. However, the reproducibility of these data across time and LC-MS platforms is not well characterized. Here, we evaluate the performance of three LC-MS platforms (Orbitrap Elite, Q Exactive HF, and Orbitrap Fusion) in label-free semiquantitative analysis of cell surface proteins over a six-year period. Sucrose gradient ultracentrifugation was used for surfaceome enrichment, following gel separation for in-depth protein identification. With our established workflow, we consistently detected and reproducibly quantified >2300 putative cell surface proteins in a human acute myeloid leukemia (AML) cell line on all three platforms. To our knowledge this is the first study reporting highly reproducible semiquantitative proteomic data collection of biological replicates across multiple years and LC-MS platforms. These data provide experimental justification for semiquantitative proteomic study designs that are executed over multiyear time intervals and on different platforms. Multiyear and multiplatform experimental designs will likely enable larger scale proteomic studies and facilitate longitudinal proteomic studies by investigators lacking access to high throughput MS facilities. Data are available via ProteomeXchange with identifier PXD022721.


Assuntos
Proteoma , Proteômica , Humanos , Espectrometria de Massas/métodos , Proteoma/análise , Proteômica/métodos , Reprodutibilidade dos Testes , Fluxo de Trabalho
9.
Blood ; 143(7): 567-569, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38358850
10.
Blood ; 140(13): 1457-1458, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36173662
11.
Nature ; 483(7391): 598-602, 2012 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-22388813

RESUMO

Generation of induced pluripotent stem cells (iPSCs) by somatic cell reprogramming involves global epigenetic remodelling. Whereas several proteins are known to regulate chromatin marks associated with the distinct epigenetic states of cells before and after reprogramming, the role of specific chromatin-modifying enzymes in reprogramming remains to be determined. To address how chromatin-modifying proteins influence reprogramming, we used short hairpin RNAs (shRNAs) to target genes in DNA and histone methylation pathways, and identified positive and negative modulators of iPSC generation. Whereas inhibition of the core components of the polycomb repressive complex 1 and 2, including the histone 3 lysine 27 methyltransferase EZH2, reduced reprogramming efficiency, suppression of SUV39H1, YY1 and DOT1L enhanced reprogramming. Specifically, inhibition of the H3K79 histone methyltransferase DOT1L by shRNA or a small molecule accelerated reprogramming, significantly increased the yield of iPSC colonies, and substituted for KLF4 and c-Myc (also known as MYC). Inhibition of DOT1L early in the reprogramming process is associated with a marked increase in two alternative factors, NANOG and LIN28, which play essential functional roles in the enhancement of reprogramming. Genome-wide analysis of H3K79me2 distribution revealed that fibroblast-specific genes associated with the epithelial to mesenchymal transition lose H3K79me2 in the initial phases of reprogramming. DOT1L inhibition facilitates the loss of this mark from genes that are fated to be repressed in the pluripotent state. These findings implicate specific chromatin-modifying enzymes as barriers to or facilitators of reprogramming, and demonstrate how modulation of chromatin-modifying enzymes can be exploited to more efficiently generate iPSCs with fewer exogenous transcription factors.


Assuntos
Reprogramação Celular , Cromatina/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Reprogramação Celular/genética , Cromatina/genética , Metilação de DNA/genética , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste , Fibroblastos/citologia , Fibroblastos/metabolismo , Histona-Lisina N-Metiltransferase , Histonas/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/metabolismo , Metilação , Metiltransferases/antagonistas & inibidores , Metiltransferases/biossíntese , Metiltransferases/genética , Metiltransferases/metabolismo , Proteína Homeobox Nanog , Complexo Repressor Polycomb 2 , Proteínas do Grupo Polycomb , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Interferente Pequeno , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Fator de Transcrição YY1/antagonistas & inibidores , Fator de Transcrição YY1/metabolismo
12.
Blood ; 121(13): 2533-41, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23361907

RESUMO

The t(6;11)(q27;q23) is a recurrent chromosomal rearrangement that encodes the MLLAF6 fusion oncoprotein and is observed in patients with diverse hematologic malignancies. The presence of the t(6;11)(q27;q23) has been linked to poor overall survival in patients with AML. In this study, we demonstrate that MLL-AF6 requires continued activity of the histone-methyltransferase DOT1L to maintain expression of the MLL-AF6-driven oncogenic gene-expression program. Using gene-expression analysis and genome-wide chromatin immunoprecipitation studies followed by next generation sequencing, we found that MLL-fusion target genes display markedly high levels of histone 3 at lysine 79 (H3K79) dimethylation in murine MLL-AF6 leukemias as well as in ML2, a human myelomonocytic leukemia cell line bearing the t(6;11)(q27;q23) translocation. Targeted disruption of Dot1l using a conditional knockout mouse model inhibited leukemogenesis mediated by the MLL-AF6 fusion oncogene. Moreover, both murine MLL-AF6-transformed cells as well as the human MLL-AF6-positive ML2 leukemia cell line displayed specific sensitivity to EPZ0004777, a recently described, selective, small-molecule inhibitor of Dot1l. Dot1l inhibition resulted in significantly decreased proliferation, decreased expression of MLL-AF6 target genes, and cell cycle arrest of MLL-AF6-transformed cells. These results indicate that patients bearing the t(6;11)(q27;q23) translocation may benefit from therapeutic agents targeting aberrant H3K79 methylation.


Assuntos
Transformação Celular Neoplásica/genética , Histona-Lisina N-Metiltransferase/genética , Cinesinas/genética , Metiltransferases/fisiologia , Proteína de Leucina Linfoide-Mieloide/genética , Miosinas/genética , Proteínas de Fusão Oncogênica/genética , Adenosina/análogos & derivados , Adenosina/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/metabolismo , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/fisiologia , Lisina/metabolismo , Metiltransferases/antagonistas & inibidores , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Compostos de Fenilureia/farmacologia
13.
bioRxiv ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38948745

RESUMO

Beckwith-Wiedemann Syndrome (BWS) is an epigenetic overgrowth syndrome caused by methylation changes in the human 11p15 chromosomal locus. Patients with BWS exhibit tissue overgrowth, as well as an increased risk of childhood neoplasms in the liver and kidney. To understand the impact of these 11p15 changes, specifically in the liver, we performed single-nucleus RNA sequencing (snRNA-seq) and single-nucleus assay for transposase-accessible chromatin with sequencing (snATAC-seq) to generate paired, cell-type-specific transcriptional and chromatin accessibility profiles of both BWS-liver and nonBWS-liver nontumorous tissue. Our integrated RNA+ATACseq multiomic approach uncovered hepatocyte-specific enrichment and activation of the peroxisome proliferator-activated receptor α (PPARA) - a liver metabolic regulator. To confirm our findings, we utilized a BWS-induced pluripotent stem cell (iPSC) model, where cells were differentiated into hepatocytes. Our data demonstrates the dysregulation of lipid metabolism in BWS-liver, which coincided with observed upregulation of PPARA during hepatocyte differentiation. BWS liver cells exhibited decreased neutral lipids and increased fatty acid ß-oxidation, relative to controls. We also observed increased reactive oxygen species (ROS) byproducts in the form of peroxidated lipids in BWS hepatocytes, which coincided with increased oxidative DNA damage. This study proposes a putative mechanism for overgrowth and cancer predisposition in BWS liver due to perturbed metabolism.

14.
Leukemia ; 38(2): 291-301, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38182819

RESUMO

Internal tandem duplication mutations in fms-like tyrosine kinase 3 (FLT3-ITD) are recurrent in acute myeloid leukemia (AML) and increase the risk of relapse. Clinical responses to FLT3 inhibitors (FLT3i) include myeloid differentiation of the FLT3-ITD clone in nearly half of patients through an unknown mechanism. We identified enhancer of zeste homolog 2 (EZH2), a component of polycomb repressive complex 2 (PRC2), as a mediator of this effect using a proteomic-based screen. FLT3i downregulated EZH2 protein expression and PRC2 activity on H3K27me3. FLT3-ITD and loss-of-function mutations in EZH2 are mutually exclusive in human AML. We demonstrated that FLT3i increase myeloid maturation with reduced stem/progenitor cell populations in murine Flt3-ITD AML. Combining EZH1/2 inhibitors with FLT3i increased terminal maturation of leukemic cells and reduced leukemic burden. Our data suggest that reduced EZH2 activity following FLT3 inhibition promotes myeloid differentiation of FLT3-ITD leukemic cells, providing a mechanistic explanation for the clinical observations. These results demonstrate that in addition to its known cell survival and proliferation signaling, FLT3-ITD has a second, previously undefined function to maintain a myeloid stem/progenitor cell state through modulation of PRC2 activity. Our findings support exploring EZH1/2 inhibitors as therapy for FLT3-ITD AML.


Assuntos
Leucemia Mieloide Aguda , Proteínas Tirosina Quinases , Humanos , Animais , Camundongos , Proteínas Tirosina Quinases/genética , Complexo Repressor Polycomb 2/genética , Proteômica , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/uso terapêutico
15.
Res Sq ; 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37961674

RESUMO

Refractoriness to initial chemotherapy and relapse after remission are the main obstacles to cure in T-cell Acute Lymphoblastic Leukemia (T-ALL). Biomarker guided risk stratification and targeted therapy have the potential to improve outcomes in high-risk T-ALL; however, cellular and genetic factors contributing to treatment resistance remain unknown. Previous bulk genomic studies in T-ALL have implicated tumor heterogeneity as an unexplored mechanism for treatment failure. To link tumor subpopulations with clinical outcome, we created an atlas of healthy pediatric hematopoiesis and applied single-cell multiomic (CITE-seq/snATAC-seq) analysis to a cohort of 40 cases of T-ALL treated on the Children's Oncology Group AALL0434 clinical trial. The cohort was carefully selected to capture the immunophenotypic diversity of T-ALL, with early T-cell precursor (ETP) and Near/Non-ETP subtypes represented, as well as enriched with both relapsed and treatment refractory cases. Integrated analyses of T-ALL blasts and normal T-cell precursors identified a bone-marrow progenitor-like (BMP-like) leukemia sub-population associated with treatment failure and poor overall survival. The single-cell-derived molecular signature of BMP-like blasts predicted poor outcome across multiple subtypes of T-ALL within two independent patient cohorts using bulk RNA-sequencing data from over 1300 patients. We defined the mutational landscape of BMP-like T-ALL, finding that NOTCH1 mutations additively drive T-ALL blasts away from the BMP-like state. We transcriptionally matched BMP-like blasts to early thymic seeding progenitors that have low NR3C1 expression and high stem cell gene expression, corresponding to a corticosteroid and conventional cytotoxic resistant phenotype we observed in ex vivo drug screening. To identify novel targets for BMP-like blasts, we performed in silico and in vitro drug screening against the BMP-like signature and prioritized BMP-like overexpressed cell-surface (CD44, ITGA4, LGALS1) and intracellular proteins (BCL-2, MCL-1, BTK, NF-κB) as candidates for precision targeted therapy. We established patient derived xenograft models of BMP-high and BMP-low leukemias, which revealed vulnerability of BMP-like blasts to apoptosis-inducing agents, TEC-kinase inhibitors, and proteasome inhibitors. Our study establishes the first multi-omic signatures for rapid risk-stratification and targeted treatment of high-risk T-ALL.

16.
Biomolecules ; 12(8)2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-36009018

RESUMO

Angiosarcoma is a rare, devastating malignancy with few curative options for disseminated disease. We analyzed a recently published genomic data set of 48 angiosarcomas and noticed recurrent amplifications of HOXA-cluster genes in 33% of patients. HOXA genes are master regulators of embryonic vascular development and adult neovascularization, which provides a molecular rationale to suspect that amplified HOXA genes act as oncogenes in angiosarcoma. HOXA amplifications typically affected multiple pro-angiogenic HOXA genes and co-occurred with amplifications of CD36 and KDR, whereas the overall mutation rate in these tumors was relatively low. HOXA amplifications were found most commonly in angiosarcomas located in the breast and were rare in angiosarcomas arising in sun-exposed areas on the head, neck, face and scalp. Our data suggest that HOXA-amplified angiosarcoma is a distinct molecular subgroup. Efforts to develop therapies targeting oncogenic HOX gene expression in AML and other sarcomas may have relevance for HOXA-amplified angiosarcoma.


Assuntos
Hemangiossarcoma , Proteínas de Homeodomínio/genética , Sarcoma , Neoplasias de Tecidos Moles , Adulto , Genes Homeobox/genética , Hemangiossarcoma/genética , Humanos , Sarcoma/genética , Neoplasias de Tecidos Moles/genética
17.
iScience ; 25(10): 105139, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36193052

RESUMO

Transcriptional dysregulation is a prominent feature in leukemia. Here, we systematically surveyed transcription factor (TF) vulnerabilities in leukemia and uncovered TF clusters that exhibit context-specific vulnerabilities within and between different subtypes of leukemia. Among these TF clusters, we demonstrated that acute myeloid leukemia (AML) with high IRF8 expression was addicted to MEF2D. MEF2D and IRF8 form an autoregulatory loop via direct binding to mutual enhancer elements. One important function of this circuit in AML is to sustain PU.1/MEIS1 co-regulated transcriptional outputs via stabilizing PU.1's chromatin occupancy. We illustrated that AML could acquire dependency on this circuit through various oncogenic mechanisms that results in the activation of their enhancers. In addition to forming a circuit, MEF2D and IRF8 can also separately regulate gene expression, and dual perturbation of these two TFs leads to a more robust inhibition of AML proliferation. Collectively, our results revealed a TF circuit essential for AML survival.

18.
Cancer Discov ; 12(11): 2684-2709, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36053276

RESUMO

The chromatin reader eleven-nineteen leukemia (ENL) has been identified as a critical dependency in acute myeloid leukemia (AML), but its therapeutic potential remains unclear. We describe a potent and orally bioavailable small-molecule inhibitor of ENL, TDI-11055, which displaces ENL from chromatin by blocking its YEATS domain interaction with acylated histones. Cell lines and primary patient samples carrying MLL rearrangements or NPM1 mutations are responsive to TDI-11055. A CRISPR-Cas9-mediated mutagenesis screen uncovers an ENL mutation that confers resistance to TDI-11055, validating the compound's on-target activity. TDI-11055 treatment rapidly decreases chromatin occupancy of ENL-associated complexes and impairs transcription elongation, leading to suppression of key oncogenic gene expression programs and induction of differentiation. In vivo treatment with TDI-11055 blocks disease progression in cell line- and patient-derived xenograft models of MLL-rearranged and NPM1-mutated AML. Our results establish ENL displacement from chromatin as a promising epigenetic therapy for molecularly defined AML subsets and support the clinical translation of this approach. SIGNIFICANCE: AML is a poor-prognosis disease for which new therapeutic approaches are desperately needed. We developed an orally bioavailable inhibitor of ENL, demonstrated its potent efficacy in MLL-rearranged and NPM1-mutated AML, and determined its mechanisms of action. These biological and chemical insights will facilitate both basic research and clinical translation. This article is highlighted in the In This Issue feature, p. 2483.


Assuntos
Leucemia Mieloide Aguda , Lisina , Humanos , Leucemia Mieloide Aguda/genética , Histonas/metabolismo , Cromatina , Proteína de Leucina Linfoide-Mieloide/metabolismo
19.
Leukemia ; 35(5): 1405-1417, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33542482

RESUMO

Translocations of Meningioma-1 (MN1) occur in a subset of acute myeloid leukemias (AML) and result in high expression of MN1, either as a full-length protein, or as a fusion protein that includes most of the N-terminus of MN1. High levels of MN1 correlate with poor prognosis. When overexpressed in murine hematopoietic progenitors, MN1 causes an aggressive AML characterized by an aberrant myeloid precursor-like gene expression program that shares features of KMT2A-rearranged (KMT2A-r) leukemia, including high levels of Hoxa and Meis1 gene expression. Compounds that target a critical KMT2A-Menin interaction have proven effective in KMT2A-r leukemia. Here, we demonstrate that Menin (Men1) is also critical for the self-renewal of MN1-driven AML through the maintenance of a distinct gene expression program. Genetic inactivation of Men1 led to a decrease in the number of functional leukemia-initiating cells. Pharmacologic inhibition of the KMT2A-Menin interaction decreased colony-forming activity, induced differentiation programs in MN1-driven murine leukemia and decreased leukemic burden in a human AML xenograft carrying an MN1-ETV6 translocation. Collectively, these results nominate Menin inhibition as a promising therapeutic strategy in MN1-driven leukemia.


Assuntos
Leucemia Mieloide Aguda/genética , Proteínas Proto-Oncogênicas/genética , Transativadores/genética , Proteínas Supressoras de Tumor/genética , Animais , Linhagem Celular Tumoral , Regulação Leucêmica da Expressão Gênica/genética , Células HEK293 , Histona-Lisina N-Metiltransferase/genética , Humanos , Camundongos , Camundongos Knockout
20.
Bone ; 142: 115677, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33022452

RESUMO

Chromatin modifying enzymes play essential roles in skeletal development and bone maintenance, and deregulation of epigenetic mechanisms can lead to skeletal growth and malformation disorders. Here, we report a novel skeletal dysplasia phenotype in mice with conditional loss of Disruptor of telomeric silencing 1-like (Dot1L) histone methyltransferase in limb mesenchymal progenitors and downstream descendants. Phenotypic characterizations of mice with Dot1L inactivation by Prrx1-Cre (Dot1L-cKOPrrx1) revealed limb shortening, abnormal bone morphologies, and forelimb dislocations. Our in vivo and in vitro data support a crucial role for Dot1L in regulating growth plate chondrocyte proliferation and differentiation, extracellular matrix production, and secondary ossification center formation. Micro-computed tomography analysis of femurs revealed that partial loss of Dot1L expression is sufficient to impair trabecular bone formation and microarchitecture in young mice. Moreover, RNAseq analysis of Dot1L deficient chondrocytes implicated Dot1L in the regulation of key genes and pathways necessary to promote cell cycle regulation and skeletal growth. Collectively, our data show that early expression of Dot1L in limb mesenchyme provides essential regulatory control of endochondral bone morphology, growth, and stability.


Assuntos
Condrócitos , Mesoderma , Animais , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/genética , Camundongos , Fenótipo , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA