Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Nature ; 631(8020): 307-312, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38898280

RESUMO

Spin accumulation in semiconductor structures at room temperature and without magnetic fields is key to enable a broader range of optoelectronic functionality1. Current efforts are limited owing to inherent inefficiencies associated with spin injection across semiconductor interfaces2. Here we demonstrate spin injection across chiral halide perovskite/III-V interfaces achieving spin accumulation in a standard semiconductor III-V (AlxGa1-x)0.5In0.5P multiple quantum well light-emitting diode. The spin accumulation in the multiple quantum well is detected through emission of circularly polarized light with a degree of polarization of up to 15 ± 4%. The chiral perovskite/III-V interface was characterized with X-ray photoelectron spectroscopy, cross-sectional scanning Kelvin probe force microscopy and cross-sectional transmission electron microscopy imaging, showing a clean semiconductor/semiconductor interface at which the Fermi level can equilibrate. These findings demonstrate that chiral perovskite semiconductors can transform well-developed semiconductor platforms into ones that can also control spin.

2.
Nature ; 623(7986): 313-318, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37696288

RESUMO

Metal halide perovskite solar cells (PSCs) represent a promising low-cost thin-film photovoltaic technology, with unprecedented power conversion efficiencies obtained for both single-junction and tandem applications1-8. To push PSCs towards commercialization, it is critical, albeit challenging, to understand device reliability under real-world outdoor conditions where multiple stress factors (for example, light, heat and humidity) coexist, generating complicated degradation behaviours9-13. To quickly guide PSC development, it is necessary to identify accelerated indoor testing protocols that can correlate specific stressors with observed degradation modes in fielded devices. Here we use a state-of-the-art positive-intrinsic-negative (p-i-n) PSC stack (with power conversion efficiencies of up to approximately 25.5%) to show that indoor accelerated stability tests can predict our six-month outdoor ageing tests. Device degradation rates under illumination and at elevated temperatures are most instructive for understanding outdoor device reliability. We also find that the indium tin oxide/self-assembled monolayer-based hole transport layer/perovskite interface most strongly affects our device operation stability. Improving the ion-blocking properties of the self-assembled monolayer hole transport layer increases averaged device operational stability at 50 °C-85 °C by a factor of about 2.8, reaching over 1,000 h at 85 °C and to near 8,200 h at 50 °C, with a projected 20% degradation, which is among the best to date for high-efficiency p-i-n PSCs14-17.

3.
Nature ; 611(7935): 278-283, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36049505

RESUMO

Perovskite solar cells (PSCs) with an inverted structure (often referred to as the p-i-n architecture) are attractive for future commercialization owing to their easily scalable fabrication, reliable operation and compatibility with a wide range of perovskite-based tandem device architectures1,2. However, the power conversion efficiency (PCE) of p-i-n PSCs falls behind that of n-i-p (or normal) structure counterparts3-6. This large performance gap could undermine efforts to adopt p-i-n architectures, despite their other advantages. Given the remarkable advances in perovskite bulk materials optimization over the past decade, interface engineering has become the most important strategy to push PSC performance to its limit7,8. Here we report a reactive surface engineering approach based on a simple post-growth treatment of 3-(aminomethyl)pyridine (3-APy) on top of a perovskite thin film. First, the 3-APy molecule selectively reacts with surface formamidinium ions, reducing perovskite surface roughness and surface potential fluctuations associated with surface steps and terraces. Second, the reaction product on the perovskite surface decreases the formation energy of charged iodine vacancies, leading to effective n-type doping with a reduced work function in the surface region. With this reactive surface engineering, the resulting p-i-n PSCs obtained a PCE of over 25 per cent, along with retaining 87 per cent of the initial PCE after over 2,400 hours of 1-sun operation at about 55 degrees Celsius in air.

4.
Nature ; 578(7796): 555-558, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32076266

RESUMO

Perovskite solar cells, as an emerging high-efficiency and low-cost photovoltaic technology1-6, face obstacles on their way towards commercialization. Substantial improvements have been made to device stability7-10, but potential issues with lead toxicity and leaching from devices remain relatively unexplored11-16. The potential for lead leakage could be perceived as an environmental and public health risk when using perovskite solar cells in building-integrated photovoltaics17-23. Here we present a chemical approach for on-device sequestration of more than 96 per cent of lead leakage caused by severe device damage. A coating of lead-absorbing material is applied to the front and back sides of the device stack. On the glass side of the front transparent conducting electrode, we use a transparent lead-absorbing molecular film containing phosphonic acid groups that bind strongly to lead. On the back (metal) electrode side, we place a polymer film blended with lead-chelating agents between the metal electrode and a standard photovoltaic packing film. The lead-absorbing films on both sides swell to absorb the lead, rather than dissolve, when subjected to water soaking, thus retaining structural integrity for easy collection of lead after damage.

5.
Nat Mater ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043927

RESUMO

Solar energy is the fastest-growing source of electricity generation globally. As deployment increases, photovoltaic (PV) panels need to be produced sustainably. Therefore, the resource utilization rate and the rate at which those resources become available in the environment must be in equilibrium while maintaining the well-being of people and nature. Metal halide perovskite (MHP) semiconductors could revolutionize PV technology due to high efficiency, readily available/accessible materials and low-cost production. Here we outline how MHP-PV panels could scale a sustainable supply chain while appreciably contributing to a global renewable energy transition. We evaluate the critical material concerns, embodied energy, carbon impacts and circular supply chain processes of MHP-PVs. The research community is in an influential position to prioritize research efforts in reliability, recycling and remanufacturing to make MHP-PVs one of the most sustainable energy sources on the market.

6.
Nat Mater ; 22(1): 73-83, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36456873

RESUMO

Achieving the long-term stability of perovskite solar cells is arguably the most important challenge required to enable widespread commercialization. Understanding the perovskite crystallization process and its direct impact on device stability is critical to achieving this goal. The commonly employed dimethyl-formamide/dimethyl-sulfoxide solvent preparation method results in a poor crystal quality and microstructure of the polycrystalline perovskite films. In this work, we introduce a high-temperature dimethyl-sulfoxide-free processing method that utilizes dimethylammonium chloride as an additive to control the perovskite intermediate precursor phases. By controlling the crystallization sequence, we tune the grain size, texturing, orientation (corner-up versus face-up) and crystallinity of the formamidinium (FA)/caesium (FA)yCs1-yPb(IxBr1-x)3 perovskite system. A population of encapsulated devices showed improved operational stability, with a median T80 lifetime (the time over which the device power conversion efficiency decreases to 80% of its initial value) for the steady-state power conversion efficiency of 1,190 hours, and a champion device showed a T80 of 1,410 hours, under simulated sunlight at 65 °C in air, under open-circuit conditions. This work highlights the importance of material quality in achieving the long-term operational stability of perovskite optoelectronic devices.


Assuntos
Amidinas , Luz Solar , Cátions , Dimetil Sulfóxido
7.
J Am Chem Soc ; 145(21): 11846-11858, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37202123

RESUMO

Metal halide perovskites are promising for optoelectronic device applications; however, their poor stability under solar illumination remains a primary concern. While the intrinsic photostability of isolated neat perovskite samples has been widely discussed, it is important to explore how charge transport layers─employed in most devices─impact photostability. Herein, we study the effect of organic hole transport layers (HTLs) on light-induced halide segregation and photoluminescence (PL) quenching at perovskite/organic HTL interfaces. By employing a series of organic HTLs, we demonstrate that the HTL's highest occupied molecular orbital energy dictates behavior; furthermore, we reveal the key role of halogen loss from the perovskite and subsequent permeation into organic HTLs, where it acts as a PL quencher at the interface and introduces additional mass transport pathways to facilitate halide phase separation. In doing so, we both reveal the microscopic mechanism of non-radiative recombination at perovskite/organic HTL interfaces and detail the chemical rationale for closely matching the perovskite/organic HTL energetics to maximize solar cell efficiency and stability.

8.
J Am Chem Soc ; 144(4): 1910-1920, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35060705

RESUMO

Deciphering the atomic and electronic structures of interfaces is key to developing state-of-the-art perovskite semiconductors. However, conventional characterization techniques have limited previous studies mainly to grain-boundary interfaces, whereas the intragrain-interface microstructures and their electronic properties have been much less revealed. Herein using scanning transmission electron microscopy, we resolved the atomic-scale structural information on three prototypical intragrain interfaces, unraveling intriguing features clearly different from those from previous observations based on standalone films or nanomaterial samples. These intragrain interfaces include composition boundaries formed by heterogeneous ion distribution, stacking faults resulted from wrongly stacked crystal planes, and symmetrical twinning boundaries. The atomic-scale imaging of these intragrain interfaces enables us to build unequivocal models for the ab initio calculation of electronic properties. Our results suggest that these structure interfaces are generally electronically benign, whereas their dynamic interaction with point defects can still evoke detrimental effects. This work paves the way toward a more complete fundamental understanding of the microscopic structure-property-performance relationship in metal halide perovskites.

9.
J Am Chem Soc ; 142(30): 13030-13040, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32602710

RESUMO

Incorporating chiral organic molecules into organic/inorganic hybrid 2D metal-halide perovskites results in a novel family of chiral hybrid semiconductors with unique spin-dependent properties. The embedded chiral organic moieties induce a chiroptical response from the inorganic metal-halide sublattice. However, the structural interplay between the chiral organic molecules and the inorganic sublattice, as well as their synergic effect on the resulting electronic band structure need to be explored in a broader material scope. Here we present three new layered tin iodide perovskites templated by chiral (R/S-)methylbenzylammonium (R/S-MBA), i.e., (R-/S-MBA)2SnI4, and their racemic phase (rac-MBA)2SnI4. These MBA2SnI4 compounds exhibit the largest level of octahedral bond distortion compared to any other reported layered tin iodide perovskite. The incorporation of chiral MBA cations leads to circularly polarized absorption from the inorganic Sn-I sublattice, displaying chiroptical activity in the 300-500 nm wavelength range. The bandgap and chiroptical activity are modulated by alloying Sn with Pb, in the series of (MBA)2Pb1-xSnxI4. Finally, we show that vertical charge transport through oriented (R-/S-MBA)2SnI4 thin films is highly spin-dependent, arising from a chiral-induced spin selectivity (CISS) effect. We demonstrate a spin-polarization in the current-voltage characteristics as high as 94%. Our work shows the tremendous potential of these chiral hybrid semiconductors for controlling both spin and charge degrees of freedom.

10.
J Am Chem Soc ; 141(14): 5972-5979, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30882210

RESUMO

Organic-inorganic halide perovskites incorporating two-dimensional (2D) structures have shown promise for enhancing the stability of perovskite solar cells (PSCs). However, the bulky spacer cations often limit charge transport. Here, we report on a simple approach based on molecular design of the organic spacer to improve the transport properties of 2D perovskites, and we use phenethylammonium (PEA) as an example. We demonstrate that by fluorine substitution on the para position in PEA to form 4-fluorophenethylammonium (F-PEA), the average phenyl ring centroid-centroid distances in the organic layer become shorter with better aligned stacking of perovskite sheets. The impact is enhanced orbital interactions and charge transport across adjacent inorganic layers as well as increased carrier lifetime and reduced trap density. Using a simple perovskite deposition at room temperature without using any additives, we obtained a power conversion efficiency of >13% for (F-PEA)2MA4Pb5I16-based PSCs. In addition, the thermal stability of 2D PSCs based on F-PEA is significantly enhanced compared to those based on PEA.

11.
Angew Chem Int Ed Engl ; 58(34): 11737-11741, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31218795

RESUMO

Organic-inorganic hybrid two-dimensional (2D) perovskites (n≤5) have recently attracted significant attention because of their promising stability and optoelectronic properties. Normally, 2D perovskites contain a monocation [e.g., methylammonium (MA+ ) or formamidinium (FA+ )]. Reported here for the first time is the fabrication of 2D perovskites (n=5) with mixed cations of MA+ , FA+ , and cesium (Cs+ ). The use of these triple cations leads to the formation of a smooth, compact surface morphology with larger grain size and fewer grain boundaries compared to the conventional MA-based counterpart. The resulting perovskite also exhibits longer carrier lifetime and higher conductivity in triple cation 2D perovskite solar cells (PSCs). The power conversion efficiency (PCE) of 2D PSCs with triple cations was enhanced by more than 80 % (from 7.80 to 14.23 %) compared to PSCs fabricated with a monocation. The PCE is also higher than that of PSCs based on binary cation (MA+ -FA+ or MA+ -Cs+ ) 2D structures.

12.
J Am Chem Soc ; 140(33): 10504-10513, 2018 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-30044630

RESUMO

The ability to manipulate quantum dot (QD) surfaces is foundational to their technological deployment. Surface manipulation of metal halide perovskite (MHP) QDs has proven particularly challenging in comparison to that of more established inorganic materials due to dynamic surface species and low material formation energy; most conventional methods of chemical manipulation targeted at the MHP QD surface will result in transformation or dissolution of the MHP crystal. In previous work, we have demonstrated record-efficiency QD solar cells (QDSCs) based on ligand-exchange procedures that electronically couple MHP QDs yet maintain their nanocrystalline size, which stabilizes the corner-sharing structure of the constituent PbI64- octahedra with optoelectronic properties optimal for solar energy conversion. In this work, we employ a variety of spectroscopic techniques to develop a molecular-level understanding of the MHP QD surface chemistry in this system. We individually target both the anionic (oleate) and cationic (oleylammonium) ligands. We find that atmospheric moisture aids the process by hydrolysis of methyl acetate to generate acetic acid and methanol. Acetic acid then replaces native oleate ligands to yield QD surface-bound acetate and free oleic acid. The native oleylammonium ligands remain throughout this film deposition process and are exchanged during a final treatment step employing smaller cations-namely, formamidinium. This final treatment has a narrow processing window; initial treatment at this stage leads to a more strongly coupled QD regime followed by transformation into a bulk MHP film after longer treatment. These insights provide chemical understanding to the deposition of high-quality, electronically coupled MHP QD films that maintain both quantum confinement and their crystalline phase and attain high photovoltaic performance.

13.
Nano Lett ; 17(3): 1796-1801, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28151679

RESUMO

We perform scanning microwave microscopy (SMM) to study the spatially varying electronic properties and related morphology of pristine and degraded methylammonium lead-halide (MAPI) perovskite films fabricated under different ambient humidity. We find that higher processing humidity leads to the emergence of increased conductivity at the grain boundaries but also correlates with the appearance of resistive grains that contain PbI2. Deteriorated films show larger and increasingly insulating grain boundaries as well as spatially localized regions of reduced conductivity within grains. These results suggest that while humidity during film fabrication primarily benefits device properties due to the passivation of traps at the grain boundaries and self-doping, it also results in the emergence of PbI2-containing grains. We further establish that MAPI film deterioration under ambient conditions proceeds via the spatially localized breakdown of film conductivity, both at grain boundaries and within grains, due to local variations in susceptibility to deterioration. These results confirm that PbI2 has both beneficial and adverse effects on device performance and provide new means for device optimization by revealing spatial variations in sample conductivity as well as morphological differences in resistance to sample deterioration.

14.
Anal Chem ; 89(1): 916-921, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27958700

RESUMO

Concerted tandem and traveling wave ion mobility mass spectrometry (CTS analysis) is a unique method that results in a four-dimensional data set including nominal precursor ion mass, product ion mobility, accurate mass of product ion, and ion abundance. This nontargeted lipidomics CTS approach was applied in both positive- and negative-ion mode to phospholipids present in human serum, and the data set was used to evaluate the value of product ion mobility in identifying lipids in a complex mixture. It was determined that the combination of diagnostic product ions and unique collisional cross-section values of product ions is a powerful tool in the structural identification of lipids in a complex biological sample.


Assuntos
Fosfolipídeos/sangue , Humanos , Espectrometria de Massas , Estrutura Molecular , Espectrometria de Massas em Tandem
15.
Langmuir ; 31(20): 5603-13, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25924006

RESUMO

Self-assembled monolayers (SAMs) of phosphonic acids (PAs) on transparent conductive oxide (TCO) surfaces can facilitate improvement in TCO/organic semiconductor interface properties. When ordered PA SAMs are formed on oxide substrates, interface dipole and electronic structure are affected by the functional group properties, orientation, and binding modes of the modifiers. Choosing octylphosphonic acid (OPA), F13-octylphosphonic acid (F13OPA), pentafluorophenyl phosphonic acid (F5PPA), benzyl phosphonic acid (BnPA), and pentafluorobenzyl phosphonic acid (F5BnPA) as a representative group of modifiers, we report polarization modulation-infrared reflection-absorption spectroscopy (PM-IRRAS) of binding and molecular orientation on indium-doped zinc oxide (IZO) substrates. Considerable variability in molecular orientation and binding type is observed with changes in PA functional group. OPA exhibits partially disordered alkyl chains but on average the chain axis is tilted ∼57° from the surface normal. F13OPA tilts 26° with mostly tridentate binding. The F5PPA ring is tilted 23° from the surface normal with a mixture of bidentate and tridentate binding; the BnPA ring tilts 31° from normal with a mixture of bidentate and tridentate binding, and the F5BnPA ring tilts 58° from normal with a majority of bidentate with some tridenate binding. These trends are consistent with what has been observed previously for the effects of fluorination on orientation of phosphonic acid modifiers. These results from PM-IRRAS are correlated with recent results on similar systems from near-edge X-ray absorption fine structure (NEXAFS) and density functional theory (DFT) calculations. Overall, these results indicate that both surface binding geometry and intermolecular interactions play important roles in dictating the orientation of PA modifiers on TCO surfaces. This work also establishes PM-IRRAS as a routine method for SAM orientation determination on complex oxide substrates.

16.
Adv Mater ; 36(3): e2308819, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37832157

RESUMO

The combined effects of compact TiO2 (c-TiO2 ) electron-transport layer (ETL) are investigated without and with mesoscopic TiO2 (m-TiO2 ) on top, and without and with an iodine-terminated silane self-assembled monolayer (SAM), on the mechanical behavior, opto-electronic properties, photovoltaic (PV) performance, and operational-stability of solar cells based on metal-halide perovskites (MHPs). The interfacial toughness increases almost threefold in going from c-TiO2 without SAM to m-TiO2 with SAM. This is attributed to the synergistic effect of the m-TiO2 /MHP nanocomposite at the interface and the enhanced adhesion afforded by the iodine-terminated silane SAM. The combination of m-TiO2 and SAM also offers a significant beneficial effect on the photocarriers extraction at the ETL/MHP interface, resulting in perovskite solar cells (PSCs) with power-conversion efficiency (PCE) of over 24% and 20% for 0.1 and 1 cm2 active areas, respectively. These PSCs also have exceptionally long operational-stability lives: extrapolated T80 (duration at 80% initial PCE retained) is ≈18 000 and 10 000 h for 0.1 and 1 cm2 active areas, respectively. Postmortem characterization and analyses of the operational-stability-tested PSCs are performed to elucidate the possible mechanisms responsible for the long operational-stability.

17.
Science ; 384(6698): 878-884, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38781395

RESUMO

Mechanical failure and chemical degradation of device heterointerfaces can strongly influence the long-term stability of perovskite solar cells (PSCs) under thermal cycling and damp heat conditions. We report chirality-mediated interfaces based on R-/S-methylbenzyl-ammonium between the perovskite absorber and electron-transport layer to create an elastic yet strong heterointerface with increased mechanical reliability. This interface harnesses enantiomer-controlled entropy to enhance tolerance to thermal cycling-induced fatigue and material degradation, and a heterochiral arrangement of organic cations leads to closer packing of benzene rings, which enhances chemical stability and charge transfer. The encapsulated PSCs showed retentions of 92% of power-conversion efficiency under a thermal cycling test (-40°C to 85°C; 200 cycles over 1200 hours) and 92% under a damp heat test (85% relative humidity; 85°C; 600 hours).

18.
ACS Appl Mater Interfaces ; 16(34): 44988-44996, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39160138

RESUMO

Metal halide perovskite solar cell (PSC) technology has an impressive power conversion efficiency (PCE) exceeding 26.1% and demonstrates cost-effective manufacturing. However, the stability of these PSCs poses a significant challenge, hindering their widespread manufacturing and commercialization. To tackle the degradation issue inherent in PSCs, surface passivation techniques, particularly employing a thin layer of two-dimensional (2D) perovskites, create a 2D/3D heterostructure. Beyond this, the exploration of metal halide double perovskites adds a new dimension to the chemical and band gap phase space of materials for optoelectronic applications. In this study, we leverage a wide band gap double perovskite interlayer to enhance the stability of 3D metal halide perovskite. Specifically, the double perovskite nanoparticle Cs2AgBiBr6, with its substantial band gap of 2.2 eV and exceptional air stability, is utilized. Through optimization, a Cs2AgBiBr6-treated PSC achieves an open-circuit voltage of 1.12 V and an impressive PCE of 19.52%. Additionally, the Cs2AgBiBr6 passivation layer proves to be effective in bolstering the stability of PSCs. This work demonstrates an additional strategy and design motif to simultaneously increase the PCE of PSCs along with achieving improved stability.

19.
Nat Chem ; 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39455700

RESUMO

In hybrid metal halide perovskites, chiroptical properties typically arise from structural symmetry breaking by incorporating a chiral A-site organic cation within the structure, which may limit the compositional space. Here we demonstrate highly efficient remote chirality transfer where chirality is imposed on an otherwise achiral hybrid metal halide semiconductor by a proximal chiral molecule that is not interspersed as part of the structure yet leads to large circular dichroism dissymmetry factors (gCD) of up to 10-2. Density functional theory calculations reveal that the transfer of stereochemical information from the chiral proximal molecule to the inorganic framework is mediated by selective interaction with divalent metal cations. Anchoring of the chiral molecule induces a centro-asymmetric distortion, which is discernible up to four inorganic layers into the metal halide lattice. This concept is broadly applicable to low-dimensional hybrid metal halides with various dimensionalities (1D and 2D) allowing independent control of the composition and degree of chirality.

20.
Langmuir ; 29(12): 3935-42, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23421597

RESUMO

We report a rapid method of depositing phosphonic acid molecular groups onto conductive metal oxide surfaces. Solutions of pentafluorobenzyl phosphonic acid (PFBPA) were deposited on indium tin oxide, indium zinc oxide, nickel oxide, and zinc oxide by spray coating substrates heated to temperatures between 25 and 150 °C using a 60 s exposure time. Comparisons of coverage and changes in work function were made to the more conventional dip-coating method utilizing a 1 h exposure time. The data show that the work function shifts and surface coverage by the phosphonic acid were similar to or greater than those obtained by the dip-coating method. When the deposition temperature was increased, the magnitude of the surface coverage and work function shift was also found to increase. The rapid exposure of the spray coating was found to result in less etching of zinc-containing oxides than the dip-coating method. Bulk heterojunction solar cells made of polyhexylthiophene (P3HT) and bis-indene-C60 (ICBA) were tested with PFBPA dip and spray-modified ITO substrates as well as poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS)-modified ITO. The spray-modified ITO solar cells showed a similar open circuit voltage (VOC) and fill factor (FF) and a less than 5% lower short circuit current density (JSC) and power conversion efficiency (PCE) than the dip- and PEDOT:PSS-modified ITO. These results demonstrate a potential path to a scalable method to deposit phosphonic acid surface modifiers on metal oxides while overcoming the limitations of other techniques that require long exposure and post-processing times.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA