Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
EMBO Rep ; 22(4): e50145, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33719157

RESUMO

Intracellular pH is a potent modulator of neuronal functions. By catalyzing (de)hydration of CO2 , intracellular carbonic anhydrase (CAi ) isoforms CA2 and CA7 contribute to neuronal pH buffering and dynamics. The presence of two highly active isoforms in neurons suggests that they may serve isozyme-specific functions unrelated to CO2 -(de)hydration. Here, we show that CA7, unlike CA2, binds to filamentous actin, and its overexpression induces formation of thick actin bundles and membrane protrusions in fibroblasts. In CA7-overexpressing neurons, CA7 is enriched in dendritic spines, which leads to aberrant spine morphology. We identified amino acids unique to CA7 that are required for direct actin interactions, promoting actin filament bundling and spine targeting. Disruption of CA7 expression in neocortical neurons leads to higher spine density due to increased proportion of small spines. Thus, our work demonstrates highly distinct subcellular expression patterns of CA7 and CA2, and a novel, structural role of CA7.


Assuntos
Actinas , Anidrases Carbônicas , Citoesqueleto de Actina/metabolismo , Actinas/genética , Actinas/metabolismo , Anidrases Carbônicas/genética , Espinhas Dendríticas/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo
2.
Mol Cell Neurosci ; 84: 77-84, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28479292

RESUMO

Dendritic spines are small actin-rich protrusions from neuronal dendrites that form the postsynaptic part of most excitatory synapses. Changes in the number or strength of synapses are physiological mechanisms behind learning. The growth and maturation of dendritic spines and the activity-induced changes to their morphology are all based on changes to the actin cytoskeleton. In this review, we will discuss the regulation of the actin cytoskeleton in dendritic spine formation and maturation, as well as in synaptic strengthening. Concerning spine formation, we will focus on spine initiation, which has received less attention in the literature. We will also examine the recently revealed regulation of the actin cytoskeleton through post-translational modifications of actin monomers, in addition to the conventional regulation of actin via actin-binding proteins.


Assuntos
Citoesqueleto de Actina/metabolismo , Espinhas Dendríticas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Sinapses/metabolismo , Actinas/metabolismo , Animais , Humanos , Plasticidade Neuronal/fisiologia
3.
J Neurosci ; 36(19): 5299-313, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27170127

RESUMO

UNLABELLED: Rapid reorganization and stabilization of the actin cytoskeleton in dendritic spines enables cellular processes underlying learning, such as long-term potentiation (LTP). Dendritic spines are enriched in exceptionally short and dynamic actin filaments, but the studies so far have not revealed the molecular mechanisms underlying the high actin dynamics in dendritic spines. Here, we show that actin in dendritic spines is dynamically phosphorylated at tyrosine-53 (Y53) in rat hippocampal and cortical neurons. Our findings show that actin phosphorylation increases the turnover rate of actin filaments and promotes the short-term dynamics of dendritic spines. During neuronal maturation, actin phosphorylation peaks at the first weeks of morphogenesis, when dendritic spines form, and the amount of Y53-phosphorylated actin decreases when spines mature and stabilize. Induction of LTP transiently increases the amount of phosphorylated actin and LTP induction is deficient in neurons expressing mutant actin that mimics phosphorylation. Actin phosphorylation provides a molecular mechanism to maintain the high actin dynamics in dendritic spines during neuronal development and to induce fast reorganization of the actin cytoskeleton in synaptic plasticity. In turn, dephosphorylation of actin is required for the stabilization of actin filaments that is necessary for proper dendritic spine maturation and LTP maintenance. SIGNIFICANCE STATEMENT: Dendritic spines are small protrusions from neuronal dendrites where the postsynaptic components of most excitatory synapses reside. Precise control of dendritic spine morphology and density is critical for normal brain function. Accordingly, aberrant spine morphology is linked to many neurological diseases. The actin cytoskeleton is a structural element underlying the proper morphology of dendritic spines. Therefore, defects in the regulation of the actin cytoskeleton in neurons have been implicated in neurological diseases. Here, we revealed a novel mechanism for regulating neuronal actin cytoskeleton that explains the specific organization and dynamics of actin in spines. The better we understand the regulation of the dendritic spine morphology, the better we understand what goes wrong in neurological diseases.


Assuntos
Actinas/metabolismo , Espinhas Dendríticas/metabolismo , Potenciação de Longa Duração , Neurogênese , Processamento de Proteína Pós-Traducional , Citoesqueleto de Actina/metabolismo , Animais , Linhagem Celular Tumoral , Células Cultivadas , Espinhas Dendríticas/fisiologia , Feminino , Humanos , Masculino , Fosforilação , Ratos , Tirosina/metabolismo
4.
J Neuroinflammation ; 14(1): 215, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29115990

RESUMO

BACKGROUND: DHCR24, involved in the de novo synthesis of cholesterol and protection of neuronal cells against different stress conditions, has been shown to be selectively downregulated in neurons of the affected brain areas in Alzheimer's disease. METHODS: Here, we investigated whether the overexpression of DHCR24 protects neurons against inflammation-induced neuronal death using co-cultures of mouse embryonic primary cortical neurons and BV2 microglial cells upon acute neuroinflammation. Moreover, the effects of DHCR24 overexpression on dendritic spine density and morphology in cultured mature mouse hippocampal neurons and on the outcome measures of ischemia-induced brain damage in vivo in mice were assessed. RESULTS: Overexpression of DHCR24 reduced the loss of neurons under inflammation elicited by LPS and IFN-γ treatment in co-cultures of mouse neurons and BV2 microglial cells but did not affect the production of neuroinflammatory mediators, total cellular cholesterol levels, or the activity of proteins linked with neuroprotective signaling. Conversely, the levels of post-synaptic cell adhesion protein neuroligin-1 were significantly increased upon the overexpression of DHCR24 in basal growth conditions. Augmentation of DHCR24 also increased the total number of dendritic spines and the proportion of mushroom spines in mature mouse hippocampal neurons. In vivo, overexpression of DHCR24 in striatum reduced the lesion size measured by MRI in a mouse model of transient focal ischemia. CONCLUSIONS: These results suggest that the augmentation of DHCR24 levels provides neuroprotection in acute stress conditions, which lead to neuronal loss in vitro and in vivo.


Assuntos
Inflamação/metabolismo , Neurônios/metabolismo , Neuroproteção/fisiologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Animais , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Morte Celular/fisiologia , Técnicas de Cocultura , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Inflamação/patologia , Masculino , Camundongos , Microglia/metabolismo , Neurônios/patologia
5.
Mol Cell Neurosci ; 61: 56-64, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24938665

RESUMO

Precise control of the formation and development of dendritic spines is critical for synaptic plasticity. Consequently, abnormal spine development is linked to various neurological disorders. The actin cytoskeleton is a structural element generating specific changes in dendritic spine morphology. Although mechanisms underlying dendritic filopodia elongation and spine head growth are relatively well understood, it is still not known how spine heads are enlarged and stabilized during dendritic spine maturation. By using rat hippocampal neurons, we demonstrate that the size of the stable actin pool increases during the neuronal maturation process. Simultaneously, the treadmilling rate of the dynamic actin pool increases. We further show that myosin IIb controls dendritic spine actin cytoskeleton by regulating these two different pools of F-actin via distinct mechanisms. The findings indicate that myosin IIb stabilizes the stable F-actin pool through actin cross-linking. Simultaneously, activation of myosin IIb contractility increases the treadmilling rate of the dynamic pool of actin. Collectively, these data show that myosin IIb has a major role in the regulation of actin filament stability in dendritic spines, and elucidate the complex mechanism through which myosin IIb functions in this process. These new insights into the mechanisms underlying dendritic spine maturation further the model of dendritic spine morphogenesis.


Assuntos
Actinas/metabolismo , Espinhas Dendríticas/fisiologia , Neurônios/citologia , Miosina não Muscular Tipo IIB/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/genética , Animais , Células Cultivadas , Espinhas Dendríticas/efeitos dos fármacos , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Hipocampo/citologia , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Toxinas Marinhas , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Biológicos , Neurônios/efeitos dos fármacos , Miosina não Muscular Tipo IIB/genética , Oxazóis/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Wistar , Fatores de Tempo , Proteína Vermelha Fluorescente
6.
J Biol Chem ; 288(2): 984-94, 2013 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-23184938

RESUMO

Cyclase-associated proteins (CAPs) are among the most highly conserved regulators of actin dynamics, being present in organisms from mammals to apicomplexan parasites. Yeast, plant, and mammalian CAPs are large multidomain proteins, which catalyze nucleotide exchange on actin monomers from ADP to ATP and recycle actin monomers from actin-depolymerizing factor (ADF)/cofilin for new rounds of filament assembly. However, the mechanism by which CAPs promote nucleotide exchange is not known. Furthermore, how apicomplexan CAPs, which lack many domains present in yeast and mammalian CAPs, contribute to actin dynamics is not understood. We show that, like yeast Srv2/CAP, mouse CAP1 interacts with ADF/cofilin and ADP-G-actin through its N-terminal α-helical and C-terminal ß-strand domains, respectively. However, in the variation to yeast Srv2/CAP, mouse CAP1 has two adjacent profilin-binding sites, and it interacts with ATP-actin monomers with high affinity through its WH2 domain. Importantly, we revealed that the C-terminal ß-sheet domain of mouse CAP1 is essential and sufficient for catalyzing nucleotide exchange on actin monomers, although the adjacent WH2 domain is not required for this function. Supporting these data, we show that the malaria parasite Plasmodium falciparum CAP, which is entirely composed of the ß-sheet domain, efficiently promotes nucleotide exchange on actin monomers. Collectively, this study provides evidence that catalyzing nucleotide exchange on actin monomers via the ß-sheet domain is the most highly conserved function of CAPs from mammals to apicomplexan parasites. Other functions, including interactions with profilin and ADF/cofilin, evolved in more complex organisms to adjust the specific role of CAPs in actin dynamics.


Assuntos
Actinas/metabolismo , Proteínas de Transporte/metabolismo , Plasmodium/enzimologia , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Biopolímeros/metabolismo , Proteínas de Transporte/química , Catálise , Eletroforese em Gel de Poliacrilamida , Dados de Sequência Molecular , Coelhos , Homologia de Sequência de Aminoácidos
7.
Trends Cell Biol ; 14(7): 386-94, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15246432

RESUMO

The actin cytoskeleton is a vital component of several key cellular and developmental processes in eukaryotes. Many proteins that interact with filamentous and/or monomeric actin regulate the structure and dynamics of the actin cytoskeleton. Actin-filament-binding proteins control the nucleation, assembly, disassembly and crosslinking of actin filaments, whereas actin-monomer-binding proteins regulate the size, localization and dynamics of the large pool of unpolymerized actin in cells. In this article, we focus on recent advances in understanding how the six evolutionarily conserved actin-monomer-binding proteins - profilin, ADF/cofilin, twinfilin, Srv2/CAP, WASP/WAVE and verprolin/WIP - interact with actin monomers and regulate their incorporation into filament ends. We also present a model of how, together, these ubiquitous actin-monomer-binding proteins contribute to cytoskeletal dynamics and actin-dependent cellular processes.


Assuntos
Actinas/fisiologia , Citoesqueleto/fisiologia , Proteínas dos Microfilamentos/fisiologia , Animais , Modelos Biológicos , Estrutura Terciária de Proteína
8.
Mol Biol Cell ; 15(5): 2324-34, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15004221

RESUMO

Cyclase-associated proteins (CAPs) are highly conserved actin monomer binding proteins present in all eukaryotes. However, the mechanism by which CAPs contribute to actin dynamics has been elusive. In mammals, the situation is further complicated by the presence of two CAP isoforms whose differences have not been characterized. Here, we show that CAP1 is widely expressed in mouse nonmuscle cells, whereas CAP2 is the predominant isoform in developing striated muscles. In cultured NIH3T3 and B16F1 cells, CAP1 is a highly abundant protein that colocalizes with cofilin-1 to dynamic regions of the cortical actin cytoskeleton. Analysis of CAP1 knockdown cells demonstrated that this protein promotes rapid actin filament depolymerization and is important for cell morphology, migration, and endocytosis. Interestingly, depletion of CAP1 leads to an accumulation of cofilin-1 into abnormal cytoplasmic aggregates and to similar cytoskeletal defects to those seen in cofilin-1 knockdown cells, demonstrating that CAP1 is required for proper subcellular localization and function of ADF/cofilin. Together, these data provide the first direct in vivo evidence that CAP promotes rapid actin dynamics in conjunction with ADF/cofilin and is required for several central cellular processes in mammals.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Proteínas de Ciclo Celular/fisiologia , Proteínas do Citoesqueleto/fisiologia , Proteínas dos Microfilamentos/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Fatores de Despolimerização de Actina , Actinas/análise , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Movimento Celular/fisiologia , Proteínas do Citoesqueleto/análise , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Destrina , Endocitose/fisiologia , Expressão Gênica , Inativação Gênica , Hibridização In Situ , Camundongos , Proteínas dos Microfilamentos/análise , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Isoformas de Proteínas/metabolismo , Interferência de RNA , RNA Mensageiro/análise , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Methods Enzymol ; 505: 47-58, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22289447

RESUMO

Dendritic spines are small protrusions in neuronal dendrites where the postsynaptic components of most excitatory synapses reside in the brain. The actin cytoskeleton is the structural element underlying changes in dendritic spine morphology and synapse strength. The proper morphology of spines and proper regulation of the actin cytoskeleton have been shown to be important in memory and learning; defects in regulation lead to various memory disorders. Thus, understanding actin cytoskeleton regulation in dendritic spines is of central importance to studies of synaptic and neuronal function. The dynamics of filamentous actin in spines can be studied with fluorescence redistribution assays. In fluorescence recovery after photobleaching (FRAP) experiments, the overexpressed green fluorescent protein (GFP)-actin fluorescence is rapidly photobleached by the application of a high-power laser beam to the area of one spine. The bleached fusion proteins incorporated into actin filaments continue treadmilling through the actin filaments and ultimately depolymerize and diffuse out of the spine. Simultaneously, unbleached GFP-actin fusion proteins diffuse into the spine and are incorporated into the filaments. The rate of actin filament treadmilling can be quantified by following the fluorescence recovery. In a photoactivation assay, the fluorescence intensity of photoactivatable-GFP-actin can be rapidly increased by a short laser pulse. The treadmilling rate of these activated actin monomers can be quantified by following the fluorescence decay. Here, we present our FRAP and photoactivation protocols to measure actin treadmilling rate in dendritic spines of living neurons.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Rastreamento de Células/métodos , Recuperação de Fluorescência Após Fotodegradação/métodos , Actinas/genética , Animais , Espinhas Dendríticas/metabolismo , Proteínas de Fluorescência Verde/genética , Camundongos , Microscopia Confocal/métodos , Neurônios/citologia , Neurônios/metabolismo , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
10.
Methods Enzymol ; 506: 391-406, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22341234

RESUMO

Dendritic spines are small bulbous expansions that receive input from a single excitatory synapse. Although spines are often characterized by a mushroom-like morphology, they come in a wide range of sizes and shapes, even within the same dendrite. In a developing brain, spines exhibit a high degree of structural and functional plasticity, reflecting the formation and elimination of synapses during the maturation of neuronal circuits. The morphology of spines in developing neurons is affected by synaptic activity, hence contributing to the experience-dependent refinement of neuronal circuits, learning, and memory. Thus, understanding spine dynamics and its regulation is of central importance to studies of synaptic plasticity in the brain. The challenge has been to develop a computer-based assay that will quantitatively assess the three-dimensional change in spine movements caused by various stimuli and experimental conditions. Here, we provide detailed protocols for cell plating, transient transfections, and time-lapse imaging of dendritic spines. For the analysis of dendritic spine dynamics, we present two methods based on quantitative three-dimensional measurements.


Assuntos
Espinhas Dendríticas/ultraestrutura , Microscopia Confocal/métodos , Imagem com Lapso de Tempo/métodos , Animais , Técnicas de Cultura de Células/métodos , Células Cultivadas , Humanos , Processamento de Imagem Assistida por Computador/métodos , Camundongos , Ratos , Software , Transfecção/métodos
11.
J Biol Chem ; 284(16): 10923-34, 2009 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-19201756

RESUMO

Srv2/cyclase-associated protein is expressed in virtually all plant, animal, and fungal organisms and has a conserved role in promoting actin depolymerizing factor/cofilin-mediated actin turnover. This is achieved by the abilities of Srv2 to recycle cofilin from ADP-actin monomers and to promote nucleotide exchange (ATP for ADP) on actin monomers. Despite this important and universal role in facilitating actin turnover, the mechanism underlying Srv2 function has remained elusive. Previous studies have demonstrated a critical functional role for the G-actin-binding C-terminal half of Srv2. Here we describe an equally important role in vivo for the N-terminal half of Srv2 in driving actin turnover. We pinpoint this activity to a conserved patch of surface residues on the N-terminal dimeric helical folded domain of Srv2, and we show that this functional site interacts with cofilin-actin complexes. Furthermore, we show that this site is essential for Srv2 acceleration of cofilin-mediated actin turnover in vitro. A cognate Srv2-binding site is identified on a conserved surface of cofilin, suggesting that this function likely extends to other organisms. In addition, our analyses reveal that higher order oligomerization of Srv2 depends on its N-terminal predicted coiled coil domain and that oligomerization optimizes Srv2 function in vitro and in vivo. Based on these data, we present a revised model for the mechanism by which Srv2 promotes actin turnover, in which coordinated activities of its N- and C-terminal halves catalyze sequential steps in recycling cofilin and actin monomers.


Assuntos
Fatores de Despolimerização de Actina/química , Fatores de Despolimerização de Actina/metabolismo , Actinas/química , Actinas/metabolismo , Difosfato de Adenosina/análogos & derivados , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/metabolismo , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Despolimerização de Actina/genética , Actinas/genética , Proteínas Adaptadoras de Transdução de Sinal , Difosfato de Adenosina/química , Difosfato de Adenosina/genética , Difosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Proteínas do Citoesqueleto/genética , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência
12.
J Cell Sci ; 120(Pt 7): 1225-34, 2007 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-17376963

RESUMO

Profilin and cyclase-associated protein (CAP, known in yeast as Srv2) are ubiquitous and abundant actin monomer-binding proteins. Profilin catalyses the nucleotide exchange on actin monomers and promotes their addition to filament barbed ends. Srv2/CAP recycles newly depolymerized actin monomers from ADF/cofilin for subsequent rounds of polymerization. Srv2/CAP also harbors two proline-rich motifs and has been suggested to interact with profilin. However, the mechanism and biological role of the possible profilin-Srv2/CAP interaction has not been investigated. Here, we show that Saccharomyces cerevisiae Srv2 and profilin interact directly (K(D) approximately 1.3 microM) and demonstrate that a specific proline-rich motif in Srv2 mediates this interaction in vitro and in vivo. ADP-actin monomers and profilin do not interfere with each other's binding to Srv2, suggesting that these three proteins can form a ternary complex. Genetic and cell biological analyses on an Srv2 allele (srv2-201) defective in binding profilin reveals that a direct interaction with profilin is not essential for Srv2 cellular function. However, srv2-201 causes a moderate increase in cell size and partially suppresses the cell growth and actin organization defects of an actin binding mutant profilin (pfy1-4). Together these data suggest that Srv2 is an important physiological interaction partner of profilin.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Profilinas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Actinas/análise , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Alelos , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/isolamento & purificação , Tamanho Celular , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/isolamento & purificação , Imunoprecipitação , Cinética , Mutação , Profilinas/genética , Prolina/química , Ligação Proteica , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA