RESUMO
The homologous genes GTPBP1 and GTPBP2 encode GTP-binding proteins 1 and 2, which are involved in ribosomal homeostasis. Pathogenic variants in GTPBP2 were recently shown to be an ultra-rare cause of neurodegenerative or neurodevelopmental disorders (NDDs). Until now, no human phenotype has been linked to GTPBP1. Here, we describe individuals carrying bi-allelic GTPBP1 variants that display an identical phenotype with GTPBP2 and characterize the overall spectrum of GTP-binding protein (1/2)-related disorders. In this study, 20 individuals from 16 families with distinct NDDs and syndromic facial features were investigated by whole-exome (WES) or whole-genome (WGS) sequencing. To assess the functional impact of the identified genetic variants, semi-quantitative PCR, western blot, and ribosome profiling assays were performed in fibroblasts from affected individuals. We also investigated the effect of reducing expression of CG2017, an ortholog of human GTPBP1/2, in the fruit fly Drosophila melanogaster. Individuals with bi-allelic GTPBP1 or GTPBP2 variants presented with microcephaly, profound neurodevelopmental impairment, pathognomonic craniofacial features, and ectodermal defects. Abnormal vision and/or hearing, progressive spasticity, choreoathetoid movements, refractory epilepsy, and brain atrophy were part of the core phenotype of this syndrome. Cell line studies identified a loss-of-function (LoF) impact of the disease-associated variants but no significant abnormalities on ribosome profiling. Reduced expression of CG2017 isoforms was associated with locomotor impairment in Drosophila. In conclusion, bi-allelic GTPBP1 and GTPBP2 LoF variants cause an identical, distinct neurodevelopmental syndrome. Mutant CG2017 knockout flies display motor impairment, highlighting the conserved role for GTP-binding proteins in CNS development across species.
Assuntos
Proteínas de Ligação ao GTP , Microcefalia , Malformações do Sistema Nervoso , Transtornos do Neurodesenvolvimento , Animais , Humanos , Drosophila melanogaster/genética , GTP Fosfo-Hidrolases/genética , Proteínas de Ligação ao GTP/genética , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Proteínas de Drosophila/genéticaRESUMO
Sclerosing skeletal dysplasias result from an imbalance between bone formation and resorption. We identified three homozygous, C-terminally truncating AXIN1 variants in seven individuals from four families affected by macrocephaly, cranial hyperostosis, and vertebral endplate sclerosis. Other frequent findings included hip dysplasia, heart malformations, variable developmental delay, and hematological anomalies. In line with AXIN1 being a central component of the ß-catenin destruction complex, analyses of primary and genome-edited cells harboring the truncating variants revealed enhanced basal canonical Wnt pathway activity. All three AXIN1-truncating variants resulted in reduced protein levels and impaired AXIN1 polymerization mediated by its C-terminal DIX domain but partially retained Wnt-inhibitory function upon overexpression. Addition of a tankyrase inhibitor attenuated Wnt overactivity in the AXIN1-mutant model systems. Our data suggest that AXIN1 coordinates the action of osteoblasts and osteoclasts and that tankyrase inhibitors can attenuate the effects of AXIN1 hypomorphic variants.
Assuntos
Luxação do Quadril , Osteosclerose , Tanquirases , Humanos , Tanquirases/genética , Tanquirases/metabolismo , Proteína Axina/genética , Proteína Axina/metabolismo , Via de Sinalização Wnt/genética , Osteosclerose/genética , beta Catenina/metabolismoRESUMO
The acyl-CoA-binding domain-containing protein 6 (ACBD6) is ubiquitously expressed, plays a role in the acylation of lipids and proteins and regulates the N-myristoylation of proteins via N-myristoyltransferase enzymes (NMTs). However, its precise function in cells is still unclear, as is the consequence of ACBD6 defects on human pathophysiology. Using exome sequencing and extensive international data sharing efforts, we identified 45 affected individuals from 28 unrelated families (consanguinity 93%) with bi-allelic pathogenic, predominantly loss-of-function (18/20) variants in ACBD6. We generated zebrafish and Xenopus tropicalis acbd6 knockouts by CRISPR/Cas9 and characterized the role of ACBD6 on protein N-myristoylation with myristic acid alkyne (YnMyr) chemical proteomics in the model organisms and human cells, with the latter also being subjected further to ACBD6 peroxisomal localization studies. The affected individuals (23 males and 22 females), aged 1-50â years, typically present with a complex and progressive disease involving moderate-to-severe global developmental delay/intellectual disability (100%) with significant expressive language impairment (98%), movement disorders (97%), facial dysmorphism (95%) and mild cerebellar ataxia (85%) associated with gait impairment (94%), limb spasticity/hypertonia (76%), oculomotor (71%) and behavioural abnormalities (65%), overweight (59%), microcephaly (39%) and epilepsy (33%). The most conspicuous and common movement disorder was dystonia (94%), frequently leading to early-onset progressive postural deformities (97%), limb dystonia (55%) and cervical dystonia (31%). A jerky tremor in the upper limbs (63%), a mild head tremor (59%), parkinsonism/hypokinesia developing with advancing age (32%) and simple motor and vocal tics were among other frequent movement disorders. Midline brain malformations including corpus callosum abnormalities (70%), hypoplasia/agenesis of the anterior commissure (66%), short midbrain and small inferior cerebellar vermis (38% each) as well as hypertrophy of the clava (24%) were common neuroimaging findings. Acbd6-deficient zebrafish and Xenopus models effectively recapitulated many clinical phenotypes reported in patients including movement disorders, progressive neuromotor impairment, seizures, microcephaly, craniofacial dysmorphism and midbrain defects accompanied by developmental delay with increased mortality over time. Unlike ACBD5, ACBD6 did not show a peroxisomal localization and ACBD6-deficiency was not associated with altered peroxisomal parameters in patient fibroblasts. Significant differences in YnMyr-labelling were observed for 68 co- and 18 post-translationally N-myristoylated proteins in patient-derived fibroblasts. N-myristoylation was similarly affected in acbd6-deficient zebrafish and X. tropicalis models, including Fus, Marcks and Chchd-related proteins implicated in neurological diseases. The present study provides evidence that bi-allelic pathogenic variants in ACBD6 lead to a distinct neurodevelopmental syndrome accompanied by complex and progressive cognitive and movement disorders.
Assuntos
Deficiência Intelectual , Microcefalia , Transtornos dos Movimentos , Malformações do Sistema Nervoso , Transtornos do Neurodesenvolvimento , Animais , Feminino , Humanos , Masculino , Transportadores de Cassetes de Ligação de ATP , Deficiência Intelectual/genética , Transtornos dos Movimentos/genética , Malformações do Sistema Nervoso/genética , Transtornos do Neurodesenvolvimento/genética , Tremor , Peixe-Zebra , Lactente , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-IdadeRESUMO
BACKGROUND: Structural birth defects occur in approximately 3% of live births; most such defects lack defined genetic or environmental causes. Despite advances in surgical approaches, pharmacologic prevention remains largely out of reach. METHODS: We queried worldwide databases of 20,248 families that included children with neurodevelopmental disorders and that were enriched for parental consanguinity. Approximately one third of affected children in these families presented with structural birth defects or microcephaly. We performed exome or genome sequencing of samples obtained from the children, their parents, or both to identify genes with biallelic pathogenic or likely pathogenic mutations present in more than one family. After identifying disease-causing variants, we generated two mouse models, each with a pathogenic variant "knocked in," to study mechanisms and test candidate treatments. We administered a small-molecule Wnt agonist to pregnant animals and assessed their offspring. RESULTS: We identified homozygous mutations in WLS, which encodes the Wnt ligand secretion mediator (also known as Wntless or WLS) in 10 affected persons from 5 unrelated families. (The Wnt ligand secretion mediator is essential for the secretion of all Wnt proteins.) Patients had multiorgan defects, including microcephaly and facial dysmorphism as well as foot syndactyly, renal agenesis, alopecia, iris coloboma, and heart defects. The mutations affected WLS protein stability and Wnt signaling. Knock-in mice showed tissue and cell vulnerability consistent with Wnt-signaling intensity and individual and collective functions of Wnts in embryogenesis. Administration of a pharmacologic Wnt agonist partially restored embryonic development. CONCLUSIONS: Genetic variations affecting a central Wnt regulator caused syndromic structural birth defects. Results from mouse models suggest that what we have named Zaki syndrome is a potentially preventable disorder. (Funded by the National Institutes of Health and others.).
Assuntos
Anormalidades Múltiplas/genética , Anormalidades Congênitas/genética , Pleiotropia Genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mutação , Receptores Acoplados a Proteínas G/genética , Proteínas Wnt/metabolismo , Animais , Modelos Animais de Doenças , Fibroblastos/metabolismo , Técnicas de Introdução de Genes , Genes Recessivos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Transgênicos , Linhagem , Fenótipo , Receptores Acoplados a Proteínas G/metabolismo , Síndrome , Via de Sinalização WntRESUMO
Syndromic constitutive thrombocytopenia encompasses a heterogeneous group of disorders characterised by quantitative and qualitative defects of platelets while featuring other malformations. Recently, heterozygous, de novo variants in RAP1B were reported in three cases of syndromic thrombocytopenia. Here, we report two additional, unrelated individuals identified retrospectively in our data repository with heterozygous variants in RAP1B: NM_001010942.2(RAP1B):c.35G>A, p.(Gly12Glu) (de novo) and NM_001010942.2(RAP1B):c.178G>A, p.(Gly60Arg). Both individuals had thrombocytopenia, as well as congenital malformations, and neurological, behavioural, and dysmorphic features, in line with previous reports. Our data supports the causal role of monoallelic RAP1B variants that disrupt RAP1B GTPase activity in syndromic congenital thrombocytopenia.
Assuntos
Plaquetas , Trombocitopenia , Humanos , Estudos Retrospectivos , Plaquetas/metabolismo , Trombocitopenia/genética , Proteínas rap de Ligação ao GTPRESUMO
Developmental and epileptic encephalopathies (DEEs) are a heterogeneous group of epilepsies characterized by early-onset, refractory seizures associated with developmental regression or impairment, with a heterogeneous genetic landscape including genes implicated in various pathways and mechanisms. We retrospectively studied the clinical and genetic data of patients with genetic DEE who presented at two tertiary centers in Egypt over a 10-year period. Exome sequencing was used for genetic testing. We report 74 patients from 63 unrelated Egyptian families, with a high rate of consanguinity (58%). The most common seizure type was generalized tonic-clonic (58%) and multiple seizure types were common (55%). The most common epilepsy syndrome was early infantile DEE (50%). All patients showed variable degrees of developmental impairment. Microcephaly, hypotonia, ophthalmological involvement and neuroimaging abnormalities were common. Eighteen novel variants were identified and the phenotypes of five DEE genes were expanded with novel phenotype-genotype associations. Obtaining a genetic diagnosis had implications on epilepsy management in 17 patients with variants in 12 genes. In this study, we expand the phenotype and genotype spectrum of DEE in a large single ethnic cohort of patients. Reaching a genetic diagnosis guided precision management of epilepsy in a significant proportion of patients.
Assuntos
Epilepsia Generalizada , Epilepsia , Criança , Humanos , Egito/epidemiologia , Estudos Retrospectivos , Epilepsia/diagnóstico , Convulsões/genética , Convulsões/complicações , FenótipoRESUMO
Trichohepatoneurodevelopmental syndrome (THNS) is an ultra-rare and complex disorder affecting multiple organ systems. It is characterized by liver dysfunction, hypotonia, global developmental delay, coarse hair, and dysmorphic features. We describe two cases of THNS of Saudi origin, the fifth and sixth cases in the medical literature. Both cases presented with multiple dysmorphic features, generalized hypotonia, global developmental delay, and high liver enzyme level. Exome sequencing of Case 1 identified a pathogenic homozygous variant within the CCDC47: NM_020198.2:c.567_570del, p.(Glu190Profs*7). Genome sequencing of Case 2 identified two likely pathogenic heterozygous variants within the CCDC47: NM_020198.2:c.1327C>T, p.(Arg443*) and NM_020198.2:c.422dup, p.(Leu141Phefs*19). The trans phase of the detected variants has been confirmed by the parental testing. Furthermore, we evaluated the gene-disease association as per ClinGen guidelines and reached a strong level of association after inclusion of the new patients/variants. The findings from these cases will help to delineate the clinical phenotype and the mutational spectrum of this complex disorder.
RESUMO
Human inborn errors of IFN-γ underlie mycobacterial disease, due to insufficient IFN-γ production by lymphoid cells, impaired myeloid cell responses to this cytokine, or both. We report four patients from two unrelated kindreds with intermittent monocytosis and mycobacterial disease, including bacillus Calmette-Guérin-osis and disseminated tuberculosis, and without any known inborn error of IFN-γ. The patients are homozygous for ZNFX1 variants (p.S959* and p.E1606Rfs*10) predicted to be loss of function (pLOF). There are no subjects homozygous for pLOF variants in public databases. ZNFX1 is a conserved and broadly expressed helicase, but its biology remains largely unknown. It is thought to act as a viral double-stranded RNA sensor in mice, but these patients do not suffer from severe viral illnesses. We analyze its subcellular localization upon overexpression in A549 and HeLa cell lines and upon stimulation of THP1 and fibroblastic cell lines. We find that this cytoplasmic protein can be recruited to or even induce stress granules. The endogenous ZNFX1 protein in cell lines of the patient homozygous for the p.E1606Rfs*10 variant is truncated, whereas ZNFX1 expression is abolished in cell lines from the patients with the p.S959* variant. Lymphocyte subsets are present at normal frequencies in these patients and produce IFN-γ normally. The hematopoietic and nonhematopoietic cells of the patients tested respond normally to IFN-γ. Our results indicate that human ZNFX1 is associated with stress granules and essential for both monocyte homeostasis and protective immunity to mycobacteria.
Assuntos
Antígenos de Neoplasias/genética , Leucocitose/genética , Infecções por Mycobacterium não Tuberculosas/genética , Células A549 , Adolescente , Antígenos de Neoplasias/metabolismo , Células Cultivadas , Criança , Grânulos Citoplasmáticos/metabolismo , Feminino , Células HEK293 , Células HeLa , Homozigoto , Humanos , Lactente , Interferon gama/metabolismo , Leucocitose/patologia , Masculino , Mutação , Infecções por Mycobacterium não Tuberculosas/patologia , Linhagem , Células THP-1 , Adulto JovemRESUMO
CLEC16A is a membrane-associated C-type lectin protein that functions as a E3-ubiquitin ligase. CLEC16A regulates autophagy and mitophagy, and reportedly localizes to late endosomes. GWAS studies have associated CLEC16A SNPs to various auto-immune and neurological disorders, including multiple sclerosis and Parkinson disease. Studies in mouse models imply a role for CLEC16A in neurodegeneration. We identified bi-allelic CLEC16A truncating variants in siblings from unrelated families presenting with a severe neurodevelopmental disorder including microcephaly, brain atrophy, corpus callosum dysgenesis, and growth retardation. To understand the function of CLEC16A in neurodevelopment we used in vitro models and zebrafish embryos. We observed CLEC16A localization to early endosomes in HEK293T cells. Mass spectrometry of human CLEC16A showed interaction with endosomal retromer complex subunits and the endosomal ubiquitin ligase TRIM27. Expression of the human variant leading to C-terminal truncated CLEC16A, abolishes both its endosomal localization and interaction with TRIM27, suggesting a loss-of-function effect. CLEC16A knockdown increased TRIM27 adhesion to early endosomes and abnormal accumulation of endosomal F-actin, a sign of disrupted vesicle sorting. Mutagenesis of clec16a by CRISPR-Cas9 in zebrafish embryos resulted in accumulated acidic/phagolysosome compartments, in neurons and microglia, and dysregulated mitophagy. The autophagocytic phenotype was rescued by wild-type human CLEC16A but not the C-terminal truncated CLEC16A. Our results demonstrate that CLEC16A closely interacts with retromer components and regulates endosomal fate by fine-tuning levels of TRIM27 and polymerized F-actin on the endosome surface. Dysregulation of CLEC16A-mediated endosomal sorting is associated with neurodegeneration, but it also causes accumulation of autophagosomes and unhealthy mitochondria during brain development.
Assuntos
Actinas , Peixe-Zebra , Animais , Humanos , Proteínas de Ligação a DNA/metabolismo , Endossomos/genética , Endossomos/metabolismo , Células HEK293 , Lectinas Tipo C/genética , Lectinas Tipo C/química , Lectinas Tipo C/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Transporte de Monossacarídeos/química , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas Nucleares/metabolismo , Transporte Proteico , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinas/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismoRESUMO
DBR1 encodes the only known human lariat debranching enzyme and its deficiency has been found to cause an autosomal recessive inborn error of immunity characterized by pediatric brainstem viral-induced encephalitis (MIM 619441). We describe a distinct allelic disorder caused by a founder recessive DBR1 variant in four families (DBR1(NM_016216.4):c.200A > G (p.Tyr67Cys)). Consistent features include prematurity, severe intrauterine growth deficiency, congenital ichthyosis-like presentation (collodion membrane, severe skin peeling and xerosis), and death before the first year of life. Patient-derived fibroblasts displayed the characteristic accumulation of intron lariats in their RNA as revealed by targeted and untargeted analysis, in addition to a marked reduction of DBR1 on immunoblot analysis. We propose a novel DBR1-related developmental disorder that is distinct from DBR1-related encephalitis susceptibility and highlight the apparent lack of correlation with the degree of DBR1 deficiency.
Assuntos
Encefalite , Ictiose , Criança , Humanos , Alelos , Causalidade , Fibroblastos , Ictiose/genéticaRESUMO
The minichromosome maintenance (MCM) complex acts as a DNA helicase during DNA replication, and thereby regulates cell cycle progression and proliferation. In addition, MCM-complex components localize to centrosomes and play an independent role in ciliogenesis. Pathogenic variants in genes coding for MCM components and other DNA replication factors have been linked to growth and developmental disorders as Meier-Gorlin syndrome and Seckel syndrome. Trio exome/genome sequencing identified the same de novo MCM6 missense variant p.(Cys158Tyr) in two unrelated individuals that presented with overlapping phenotypes consisting of intra-uterine growth retardation, short stature, congenital microcephaly, endocrine features, developmental delay and urogenital anomalies. The identified variant affects a zinc binding cysteine in the MCM6 zinc finger signature. This domain, and specifically cysteine residues, are essential for MCM-complex dimerization and the induction of helicase activity, suggesting a deleterious effect of this variant on DNA replication. Fibroblasts derived from the two affected individuals showed defects both in ciliogenesis and cell proliferation. We additionally traced three unrelated individuals with de novo MCM6 variants in the oligonucleotide binding (OB)-fold domain, presenting with variable (neuro)developmental features including autism spectrum disorder, developmental delay, and epilepsy. Taken together, our findings implicate de novo MCM6 variants in neurodevelopmental disorders. The clinical features and functional defects related to the zinc binding residue resemble those observed in syndromes related to other MCM components and DNA replication factors, while de novo OB-fold domain missense variants may be associated with more variable neurodevelopmental phenotypes. These data encourage consideration of MCM6 variants in the diagnostic arsenal of NDD.
Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Microcefalia , Transtornos do Neurodesenvolvimento , Humanos , Cisteína/genética , Transtornos do Neurodesenvolvimento/genética , Proteínas de Ciclo Celular/genética , DNA Helicases/genética , Microcefalia/genética , Fenótipo , Zinco , Deficiência Intelectual/genética , Componente 6 do Complexo de Manutenção de Minicromossomo/genéticaRESUMO
PURPOSE: Developmentally regulated Guanosine-5'-triphosphate-binding protein 1 (DRG1) is a highly conserved member of a class of GTPases implicated in translation. Although the expression of mammalian DRG1 is elevated in the central nervous system during development, and its function has been implicated in fundamental cellular processes, no pathogenic germline variants have yet been identified. Here, we characterize the clinical and biochemical consequences of DRG1 variants. METHODS: We collate clinical information of 4 individuals with germline DRG1 variants and use in silico, in vitro, and cell-based studies to study the pathogenicity of these alleles. RESULTS: We identified private germline DRG1 variants, including 3 stop-gained p.Gly54∗, p.Arg140∗, p.Lys263∗, and a p.Asn248Phe missense variant. These alleles are recessively inherited in 4 affected individuals from 3 distinct families and cause a neurodevelopmental disorder with global developmental delay, primary microcephaly, short stature, and craniofacial anomalies. We show that these loss-of-function variants (1) severely disrupt DRG1 messenger RNA/protein stability in patient-derived fibroblasts, (2) impair its GTPase activity, and (3) compromise its binding to partner protein ZC3H15. Consistent with the importance of DRG1 in humans, targeted inactivation of mouse Drg1 resulted in preweaning lethality. CONCLUSION: Our work defines a new Mendelian disorder of DRG1 deficiency. This study highlights DRG1's importance for normal mammalian development and underscores the significance of translation factor GTPases in human physiology and homeostasis.
Assuntos
Proteínas de Ligação ao GTP , Transtornos do Neurodesenvolvimento , Animais , Humanos , Camundongos , Proteínas de Transporte , GTP Fosfo-Hidrolases/genética , Mamíferos/metabolismo , Transtornos do Neurodesenvolvimento/genética , RNA MensageiroRESUMO
PURPOSE: Pathogenic variants in genes encoding ubiquitin E3 ligases are known to cause neurodevelopmental syndromes. Additional neurodevelopmental disorders associated with the other genes encoding E3 ligases are yet to be identified. METHODS: Chromosomal analysis and exome sequencing were used to identify the genetic causes in 10 patients from 7 unrelated families with syndromic neurodevelopmental, seizure, and movement disorders and neurobehavioral phenotypes. RESULTS: In total, 4 patients were found to have 3 different homozygous loss-of-function (LoF) variants, and 3 patients had 4 compound heterozygous missense variants in the candidate E3 ligase gene, HECTD4, that were rare, absent from controls as homozygous, and predicted to be deleterious in silico. In 3 patients from 2 families with Angelman-like syndrome, paralog-directed candidate gene approach detected 2 LoF variants in the other candidate E3 ligase gene, UBE3C, a paralog of the Angelman syndrome E3 ligase gene, UBE3A. The RNA studies in 4 patients with LoF variants in HECTD4 and UBE3C provided evidence for the LoF effect. CONCLUSION: HECTD4 and UBE3C are novel biallelic rare disease genes, expand the association of the other HECT E3 ligase group with neurodevelopmental syndromes, and could explain some of the missing heritability in patients with a suggestive clinical diagnosis of Angelman syndrome.
Assuntos
Síndrome de Angelman , Transtornos do Neurodesenvolvimento , Humanos , Síndrome de Angelman/genética , Ubiquitina/genética , Ubiquitina-Proteína Ligases/genética , Transtornos do Neurodesenvolvimento/genética , FenótipoRESUMO
Hereditary spastic paraplegias (HSP) are rare, inherited neurodegenerative or neurodevelopmental disorders that mainly present with lower limb spasticity and muscle weakness due to motor neuron dysfunction. Whole genome sequencing identified bi-allelic truncating variants in AMFR, encoding a RING-H2 finger E3 ubiquitin ligase anchored at the membrane of the endoplasmic reticulum (ER), in two previously genetically unexplained HSP-affected siblings. Subsequently, international collaboration recognized additional HSP-affected individuals with similar bi-allelic truncating AMFR variants, resulting in a cohort of 20 individuals from 8 unrelated, consanguineous families. Variants segregated with a phenotype of mainly pure but also complex HSP consisting of global developmental delay, mild intellectual disability, motor dysfunction, and progressive spasticity. Patient-derived fibroblasts, neural stem cells (NSCs), and in vivo zebrafish modeling were used to investigate pathomechanisms, including initial preclinical therapy assessment. The absence of AMFR disturbs lipid homeostasis, causing lipid droplet accumulation in NSCs and patient-derived fibroblasts which is rescued upon AMFR re-expression. Electron microscopy indicates ER morphology alterations in the absence of AMFR. Similar findings are seen in amfra-/- zebrafish larvae, in addition to altered touch-evoked escape response and defects in motor neuron branching, phenocopying the HSP observed in patients. Interestingly, administration of FDA-approved statins improves touch-evoked escape response and motor neuron branching defects in amfra-/- zebrafish larvae, suggesting potential therapeutic implications. Our genetic and functional studies identify bi-allelic truncating variants in AMFR as a cause of a novel autosomal recessive HSP by altering lipid metabolism, which may potentially be therapeutically modulated using precision medicine with statins.
Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Paraplegia Espástica Hereditária , Animais , Humanos , Paraplegia Espástica Hereditária/tratamento farmacológico , Paraplegia Espástica Hereditária/genética , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Peixe-Zebra , Mutação , Neurônios Motores , Receptores do Fator Autócrino de Motilidade/genéticaRESUMO
PURPOSE: We sought to describe a disorder clinically mimicking cystic fibrosis (CF) and to elucidate its genetic cause. METHODS: Exome/genome sequencing and human phenotype ontology data of nearly 40 000 patients from our Bio/Databank were analysed. RNA sequencing of samples from the nasal mucosa from patients, carriers and controls followed by transcriptome analysis was performed. RESULTS: We identified 13 patients from 9 families with a CF-like phenotype consisting of recurrent lower respiratory infections (13/13), failure to thrive (13/13) and chronic diarrhoea (8/13), with high morbidity and mortality. All patients had biallelic variants in AGR2, (1) two splice-site variants, (2) gene deletion and (3) three missense variants. We confirmed aberrant AGR2 transcripts caused by an intronic variant and complete absence of AGR2 transcripts caused by the large gene deletion, resulting in loss of function (LoF). Furthermore, transcriptome analysis identified significant downregulation of components of the mucociliary machinery (intraciliary transport, cilium organisation), as well as upregulation of immune processes. CONCLUSION: We describe a previously unrecognised autosomal recessive disorder caused by AGR2 variants. AGR2-related disease should be considered as a differential diagnosis in patients presenting a CF-like phenotype. This has implications for the molecular diagnosis and management of these patients. AGR2 LoF is likely the disease mechanism, with consequent impairment of the mucociliary defence machinery. Future studies should aim to establish a better understanding of the disease pathophysiology and to identify potential drug targets.
Assuntos
Fibrose Cística , Mucoproteínas/genética , Proteínas Oncogênicas/genética , Fibrose Cística/diagnóstico , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Exoma , Humanos , Mutação , FenótipoRESUMO
The redox state of the neural progenitors regulates physiological processes such as neuronal differentiation and dendritic and axonal growth. The relevance of endoplasmic reticulum (ER)-associated oxidoreductases in these processes is largely unexplored. We describe a severe neurological disorder caused by bi-allelic loss-of-function variants in thioredoxin (TRX)-related transmembrane-2 (TMX2); these variants were detected by exome sequencing in 14 affected individuals from ten unrelated families presenting with congenital microcephaly, cortical polymicrogyria, and other migration disorders. TMX2 encodes one of the five TMX proteins of the protein disulfide isomerase family, hitherto not linked to human developmental brain disease. Our mechanistic studies on protein function show that TMX2 localizes to the ER mitochondria-associated membranes (MAMs), is involved in posttranslational modification and protein folding, and undergoes physical interaction with the MAM-associated and ER folding chaperone calnexin and ER calcium pump SERCA2. These interactions are functionally relevant because TMX2-deficient fibroblasts show decreased mitochondrial respiratory reserve capacity and compensatory increased glycolytic activity. Intriguingly, under basal conditions TMX2 occurs in both reduced and oxidized monomeric form, while it forms a stable dimer under treatment with hydrogen peroxide, recently recognized as a signaling molecule in neural morphogenesis and axonal pathfinding. Exogenous expression of the pathogenic TMX2 variants or of variants with an in vitro mutagenized TRX domain induces a constitutive TMX2 polymerization, mimicking an increased oxidative state. Altogether these data uncover TMX2 as a sensor in the MAM-regulated redox signaling pathway and identify it as a key adaptive regulator of neuronal proliferation, migration, and organization in the developing brain.
Assuntos
Encefalopatias/patologia , Encéfalo/anormalidades , Deficiências do Desenvolvimento/patologia , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Tiorredoxinas/metabolismo , Adolescente , Adulto , Encefalopatias/genética , Encefalopatias/metabolismo , Criança , Pré-Escolar , Estudos de Coortes , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/metabolismo , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Seguimentos , Humanos , Lactente , Recém-Nascido , Masculino , Proteínas de Membrana/genética , Mitocôndrias/patologia , Oxirredução , Prognóstico , Pele/metabolismo , Pele/patologia , Tiorredoxinas/genética , TranscriptomaRESUMO
Sphingomyelinases generate ceramide from sphingomyelin as a second messenger in intracellular signaling pathways involved in cell proliferation, differentiation, or apoptosis. Children from 12 unrelated families presented with microcephaly, simplified gyral pattern of the cortex, hypomyelination, cerebellar hypoplasia, congenital arthrogryposis, and early fetal/postnatal demise. Genomic analysis revealed bi-allelic loss-of-function variants in SMPD4, coding for the neutral sphingomyelinase-3 (nSMase-3/SMPD4). Overexpression of human Myc-tagged SMPD4 showed localization both to the outer nuclear envelope and the ER and additionally revealed interactions with several nuclear pore complex proteins by proteomics analysis. Fibroblasts from affected individuals showed ER cisternae abnormalities, suspected for increased autophagy, and were more susceptible to apoptosis under stress conditions, while treatment with siSMPD4 caused delayed cell cycle progression. Our data show that SMPD4 links homeostasis of membrane sphingolipids to cell fate by regulating the cross-talk between the ER and the outer nuclear envelope, while its loss reveals a pathogenic mechanism in microcephaly.
Assuntos
Artrogripose/genética , Microcefalia/genética , Transtornos do Neurodesenvolvimento/genética , Esfingomielina Fosfodiesterase/genética , Artrogripose/patologia , Linhagem da Célula , Criança , Retículo Endoplasmático/metabolismo , Feminino , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Masculino , Microcefalia/patologia , Mitose , Transtornos do Neurodesenvolvimento/patologia , Linhagem , Splicing de RNARESUMO
PURPOSE: In this study we aimed to identify the molecular genetic cause of a progressive multisystem disease with prominent lipodystrophy. METHODS: In total, 5 affected individuals were investigated using exome sequencing. Dermal fibroblasts were characterized using RNA sequencing, proteomics, immunoblotting, immunostaining, and electron microscopy. Subcellular localization and rescue studies were performed. RESULTS: We identified a lipodystrophy phenotype with a typical facial appearance, corneal clouding, achalasia, progressive hearing loss, and variable severity. Although 3 individuals showed stunted growth, intellectual disability, and died within the first decade of life (A1, A2, and A3), 2 are adults with normal intellectual development (A4 and A5). All individuals harbored an identical homozygous nonsense variant affecting the retention and splicing complex component BUD13. The nucleotide substitution caused alternative splicing of BUD13 leading to a stable truncated protein whose expression positively correlated with disease expression and life expectancy. In dermal fibroblasts, we found elevated intron retention, a global reduction of spliceosomal proteins, and nuclei with multiple invaginations, which were more pronounced in A1, A2, and A3. Overexpression of both BUD13 isoforms normalized the nuclear morphology. CONCLUSION: Our results define a hitherto unknown syndrome and show that the alternative splice product converts a loss-of-function into a hypomorphic allele, thereby probably determining the severity of the disease and the survival of affected individuals.
Assuntos
Processamento Alternativo , Lipodistrofia , Proteínas de Ligação a RNA/genética , Criança , Deficiências do Desenvolvimento/genética , Humanos , Íntrons , Lipodistrofia/genética , Splicing de RNARESUMO
HIDEA syndrome is caused by biallelic pathogenic variants in P4HTM. The phenotype is characterized by muscular and central hypotonia, hypoventilation including obstructive and central sleep apneas, intellectual disability, dysautonomia, epilepsy, eye abnormalities, and an increased tendency to develop respiratory distress during pneumonia. Here, we report six new patients with HIDEA syndrome caused by five different biallelic P4HTM variants, including three novel variants. We describe two Finnish enriched pathogenic P4HTM variants and demonstrate that these variants are embedded within founder haplotypes. We review the clinical data from all previously published patients with HIDEA and characterize all reported P4HTM pathogenic variants associated with HIDEA in silico. All known pathogenic variants in P4HTM result in either premature stop codons, an intragenic deletion, or amino acid changes that impact the active site or the overall stability of P4H-TM protein. In all cases, normal P4H-TM enzyme function is expected to be lost or severely decreased. This report expands knowledge of the genotypic and phenotypic spectrum of the disease.
Assuntos
Códon sem Sentido , Deficiência Intelectual , Prolil Hidroxilases/metabolismo , Aminoácidos , Domínio Catalítico , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Hipotonia Muscular/genética , Fenótipo , SíndromeRESUMO
Biallelic changes in the ZNFX1 gene have been recently reported to cause severe familial immunodeficiency. Through a search of our bio/databank with information from genetic testing of >55 000 individuals, we identified nine additional patients from seven families with six novel homozygous ZNFX1 variants. Consistent with the previously described phenotype, our patients suffered from monocytosis, thrombocytopenia, hepatosplenomegaly, recurrent infections, and lymphadenopathy. The two most severely affected probands also had renal involvement and clinical presentations compatible with hemophagocytic lymphohistiocytosis. The disease was less lethal among our patients than previously reported. We identified two missense changes, two variants predicted to result in complete protein loss through nonsense-mediated decay, and two frameshift changes that likely introduce a truncation. Our findings (i) independently confirm the role of ZNFX1 in primary genetic immunodeficiency, (ii) expand the genetic and clinical spectrum of ZNFX1-related disease, and (iii) illustrate the utility of large, well-curated, and continually updated genotype-phenotype databases in resolving molecular diagnoses of patients with initially negative genetic testing findings.