Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Chromosoma ; 131(1-2): 29-45, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35099570

RESUMO

Satellites are an abundant source of repetitive DNAs that play an essential role in the chromosomal organization and are tightly linked with the evolution of sex chromosomes. Among fishes, Triportheidae stands out as the only family where almost all species have a homeologous ZZ/ZW sex chromosomes system. While the Z chromosome is typically conserved, the W is always smaller, with variations in size and morphology between species. Here, we report an analysis of the satellitome of Triportheus auritus (TauSat) by integrating genomic and chromosomal data, with a special focus on the highly abundant and female-biased satDNAs. In addition, we investigated the evolutionary trajectories of the ZW sex chromosomes in the Triportheidae family by mapping satDNAs in selected representative species of this family. The satellitome of T. auritus comprised 53 satDNA families of which 24 were also hybridized by FISH. Most satDNAs differed significantly between sexes, with 19 out of 24 being enriched on the W chromosome of T. auritus. The number of satDNAs hybridized into the W chromosomes of T. signatus and T. albus decreased to six and four, respectively, in accordance with the size of their W chromosomes. No TauSat probes produced FISH signals on the chromosomes of Agoniates halecinus. Despite its apparent conservation, our results indicate that each species differs in the satDNA accumulation on the Z chromosome. Minimum spanning trees (MSTs), generated for three satDNA families with different patterns of FISH mapping data, revealed different homogenization rates between the Z and W chromosomes. These results were linked to different levels of recombination between them. The most abundant satDNA family (TauSat01) was exclusively hybridized in the centromeres of all 52 chromosomes of T. auritus, and its putative role in the centromere evolution was also highlighted. Our results identified a high differentiation of both ZW chromosomes regarding satellites composition, highlighting their dynamic role in the sex chromosomes evolution.


Assuntos
Caraciformes , Animais , Caraciformes/genética , DNA , Evolução Molecular , Feminino , Peixes/genética , Genoma , Genômica , Cromossomos Sexuais/genética
2.
Chromosome Res ; 29(3-4): 391-416, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34694531

RESUMO

Teleost fishes exhibit a breath-taking diversity of sex determination and differentiation mechanisms. They encompass at least nine sex chromosome systems with often low degree of differentiation, high rate of inter- and intra-specific variability, and frequent turnovers. Nevertheless, several mainly female heterogametic systems at an advanced stage of genetic differentiation and high evolutionary stability have been also found across teleosts, especially among Neotropical characiforms. In this study, we aim to characterize the ZZ/ZW sex chromosome system in representatives of the Triportheidae family (Triportheus auritus, Agoniates halecinus, and the basal-most species Lignobrycon myersi) and its sister clade Gasteropelecidae (Carnegiella strigata, Gasteropelecus levis, and Thoracocharax stellatus). We applied both conventional and molecular cytogenetic approaches including chromosomal mapping of 5S and 18S ribosomal DNA clusters, cross-species chromosome painting (Zoo-FISH) with sex chromosome-derived probes and comparative genomic hybridization (CGH). We identified the ZW sex chromosome system for the first time in A. halecinus and G. levis and also in C. strigata formerly reported to lack sex chromosomes. We also brought evidence for possible mechanisms underlying the sex chromosome differentiation, including inversions, repetitive DNA accumulation, and exchange of genetic material. Our Zoo-FISH experiments further strongly indicated that the ZW sex chromosomes of Triportheidae and Gasteropelecidae are homeologous, suggesting their origin before the split of these lineages (approx. 40-70 million years ago). Such extent of sex chromosome stability is almost exceptional in teleosts, and hence, these lineages afford a special opportunity to scrutinize unique evolutionary forces and pressures shaping sex chromosome evolution in fishes and vertebrates in general.


Assuntos
Caraciformes , Animais , Caraciformes/genética , Mapeamento Cromossômico , Coloração Cromossômica , Hibridização Genômica Comparativa , Evolução Molecular , Feminino , Humanos , Cromossomos Sexuais/genética
3.
Genet Mol Biol ; 45(2): e20210170, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35604463

RESUMO

The Neotropical armored catfish genus Harttia presents a wide variation of chromosomal rearrangements among its representatives. Studies indicate that translocation and Robertsonian rearrangements have triggered the karyotype evolution in the genus, including differentiation of sex chromosome systems. However, few studies used powerful tools, such as comparative whole chromosome painting, to clarify this highly diversified scenario. Here, we isolated probes from the X1 (a 5S rDNA carrier) and the X2 (a 45S rDNA carrier) chromosomes of Harttia punctata, which displays an X1X1X2X2/X1X2Y multiple sex chromosome system. Those probes were applied in other Harttia species to evidence homeologous chromosome blocks. The resulting data reinforce that translocation events played a role in the origin of the X1X2Y sex chromosome system in H. punctata. The repositioning of homologous chromosomal blocks carrying rDNA sites among ten Harttia species has also been demonstrated. Anchored to phylogenetic data it was possible to evidence some events of the karyotype diversification of the studied species and to prove an independent origin for the two types of multiple sex chromosomes, XX/XY1Y2 and X1X1X2X2/X1X2Y, that occur in Harttia species. The results point to evolutionary breakpoint regions in the genomes within or adjacent to rDNA sites that were widely reused in Harttia chromosome remodeling.

4.
Ecotoxicol Environ Saf ; 209: 111835, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33383344

RESUMO

The Amazon aquatic ecosystems have been modified by the human population growth, going through changes in their water bodies and aquatic biota. The spectacled alligator (Caiman crocodilus crocodilus) has a wide distribution and adaptability to several environments, even those polluted ones. This study aimed to investigate if a Caiman species living in urban streams of Manaus city (Amazonas State, Brazil) is affected by environmental pollution. For that, it was used classical and molecular cytogenetic procedures, in addition to micronucleus and comet assays. Although the karyotype macrostructure remains unaltered (2 n = 42 chromosomes; 24 t + 18 m/sm; NF = 60), the genotoxic analysis and the cytogenetic mapping of repetitive DNA sequences demonstrated that polluted environments alter the genome of the specimens, affecting both the chromosomal organization and the genetic material.


Assuntos
Jacarés e Crocodilos/fisiologia , Mutagênicos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Brasil , Dano ao DNA , Ecossistema , Humanos
5.
Genet Mol Biol ; 44(4): e20210122, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34807969

RESUMO

Epinephelidae (groupers) is an astonishingly diverse group of carnivorous fish widely distributed in reef environments around the world, with growing economic importance. The first chromosomal inferences suggested a conservative scenario for the family. However, to date, this has not been validated using biogeographic and phylogenetic approaches. Thus, to estimate karyotype diversification among groupers, eight species from the Atlantic and Indian oceans were investigated using conventional cytogenetic protocols and fluorescence in situ hybridization of repetitive sequences (rDNA, microsatellites, transposable elements). Despite the remarkable persistence of some symplesiomorphic karyotype patterns, such as all species sharing 2n=48 and most preserve a basal karyotype (2n=48 acrocentrics), the chromosomal diversification in the family revealed an unsuspected evolutionary dynamic, where about 40% of the species escape from the ancestral karyotype pattern. These karyotype changes showed a relation with the historical biogeography, likely as a byproduct of the progressive occupancy of new areas (huge diversity of adaptive and speciation conditions). In this context, oceanic regions harboring more recent clades such as those of the Indo-Pacific, exhibited a higher karyotype diversity. Therefore, the karyotype evolution of Epinephelidae fits well with the expansion and geographic contingencies of its clades, providing a more complex and diverse scenario than previously assumed.

6.
Genet Mol Biol ; 43(4): e20200091, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33156890

RESUMO

The freshwater family Siluridae occurs in Eurasia and is especially speciose in South and Southeast Asia, representing an important aquaculture and fishery targets. However, despite the restricted cytogenetic data, a high diploid number variation (from 2n=40 to 92) characterizes this fish group. Considering the large genomic divergence among its species, silurid genomes have experienced an enormous diversification throughout their evolutionary history. Here, we aim to investigate the chromosomal distribution of several microsatellite repeats in 12 Siluridae species and infer about their possible roles in the karyotype evolution that occurred in this group. Our results indicate divergent patterns of microsatellite distribution and accumulation among the analyzed species. Indeed, they are especially present in significant chromosome locations, such as the centromeric and telomeric regions, precisely the ones associated with several kinds of chromosomal rearrangements. Our data provide pieces of evidence that repetitive DNAs played a direct role in fostering the chromosomal differentiation and biodiversity in this fish family.

7.
Chromosoma ; 127(1): 115-128, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29124392

RESUMO

The Neotropical fish, Hoplias malabaricus, is one of the most cytogenetically studied fish taxon with seven distinct karyomorphs (A-G) comprising varying degrees of sex chromosome differentiation, ranging from homomorphic to highly differentiated simple and multiple sex chromosomes. Therefore, this fish offers a unique opportunity to track evolutionary mechanisms standing behind the sex chromosome evolution and differentiation. Here, we focused on a high-resolution cytogenetic characterization of the unique XX/XY1Y2 multiple sex chromosome system found in one of its karyomorphs (G). For this, we applied a suite of conventional (Giemsa-staining, C-banding) and molecular cytogenetic approaches, including fluorescence in situ hybridization FISH (with 5S and 18S rDNAs, 10 microsatellite motifs and telomeric (TTAGGG) n sequences as probes), comparative genomic hybridization (CGH), and whole chromosome painting (WCP). In addition, we performed comparative analyses with other Erythrinidae species to discover the evolutionary origin of this unique karyomorph G-specific XY1Y2 multiple sex chromosome system. WCP experiments confirmed the homology between these multiple sex chromosomes and the nascent XX/XY sex system found in the karyomorph F, but disproved a homology with those of karyomorphs A-D and other closely related species. Besides, the putative origin of such XY1Y2 system by rearrangements of several chromosome pairs from an ancestral karyotype was also highlighted. In addition, clear identification of a male-specific region on the Y1 chromosome suggested a differential pattern of repetitive sequences accumulation. The present data suggested the origin of this unique XY1Y2 sex system, revealing evidences for the high level of plasticity of sex chromosome differentiation within the Erythrinidae.


Assuntos
Evolução Molecular , Peixes/genética , Cromossomos Sexuais/genética , Animais , Coloração Cromossômica , Hibridização Genômica Comparativa , Feminino , Peixes/metabolismo , Hibridização in Situ Fluorescente , Cariótipo , Masculino , Repetições de Microssatélites , Sequências Repetitivas de Ácido Nucleico , Telômero
8.
Int J Mol Sci ; 20(12)2019 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-31208145

RESUMO

We present the first cytogenetic data for Lebiasina bimaculata and L. melanoguttata with the aim of (1) investigating evolutionary events within Lebiasina and their relationships with other Lebiasinidae genera and (2) checking the evolutionary relationships between Lebiasinidae and Ctenoluciidae. Both species have a diploid number 2n = 36 with similar karyotypes and microsatellite distribution patterns but present contrasting C-positive heterochromatin and CMA3+ banding patterns. The remarkable interstitial series of C-positive heterochromatin occurring in L. melanoguttata is absent in L. bimaculata. Accordingly, L. bimaculata shows the ribosomal DNA sites as the only GC-rich (CMA3+) regions, while L. melanoguttata shows evidence of a clear intercalated CMA3+ banding pattern. In addition, the multiple 5S and 18S rDNA sites in L. melanogutatta contrast with single sites present in L. bimaculata. Comparative genomic hybridization (CGH) experiments also revealed a high level of genomic differentiation between both species. A polymorphic state of a conspicuous C-positive, CMA3+, and (CGG)n band was found only to occur in L. bimaculata females, and its possible relationship with a nascent sex chromosome system is discussed. Whole chromosome painting (WCP) and CGH experiments indicate that the Lebiasina species examined and Boulengerella maculata share similar chromosomal sequences, thus supporting the relatedness between them and the evolutionary relationships between the Lebiasinidae and Ctenoluciidae families.


Assuntos
Caraciformes/genética , Cromossomos , Evolução Molecular , Animais , Bandeamento Cromossômico , Mapeamento Cromossômico , Coloração Cromossômica , Hibridização Genômica Comparativa , Feminino , Heterocromatina/genética , Cariótipo , Masculino , Polimorfismo Genético , Sequências Repetitivas de Ácido Nucleico , América do Sul
9.
Int J Mol Sci ; 20(17)2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31480792

RESUMO

Arowanas (Osteoglossinae) are charismatic freshwater fishes with six species and two genera (Osteoglossum and Scleropages) distributed in South America, Asia, and Australia. In an attempt to provide a better assessment of the processes shaping their evolution, we employed a set of cytogenetic and genomic approaches, including i) molecular cytogenetic analyses using C- and CMA3/DAPI staining, repetitive DNA mapping, comparative genomic hybridization (CGH), and Zoo-FISH, along with ii) the genotypic analyses of single nucleotide polymorphisms (SNPs) generated by diversity array technology sequencing (DArTseq). We observed diploid chromosome numbers of 2n = 56 and 54 in O. bicirrhosum and O. ferreirai, respectively, and 2n = 50 in S. formosus, while S. jardinii and S. leichardti presented 2n = 48 and 44, respectively. A time-calibrated phylogenetic tree revealed that Osteoglossum and Scleropages divergence occurred approximately 50 million years ago (MYA), at the time of the final separation of Australia and South America (with Antarctica). Asian S. formosus and Australian Scleropages diverged about 35.5 MYA, substantially after the latest terrestrial connection between Australia and Southeast Asia through the Indian plate movement. Our combined data provided a comprehensive perspective of the cytogenomic diversity and evolution of arowana species on a timescale.


Assuntos
Evolução Biológica , Peixes/genética , Genômica , Animais , Bandeamento Cromossômico , Mapeamento Cromossômico , Variação Genética , Técnicas de Genotipagem , Geografia , Cariótipo , Análise de Componente Principal
10.
Genet Mol Biol ; 42(2): 365-373, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31259363

RESUMO

Parodontidae is a small group of fish and some species are particularly difficult to identify due to the lack of sufficiently consistent morphological traits. Cytogenetically, the species possess 2n = 54 chromosomes and are either sex-homomorphic or sex-heteromorphic (regarding its chromosomes). We evaluated data on color, tooth morphology, cytogenetics, and mitochondrial markers (COI) in Apareiodon specimens from the Aripuanã River (Amazon basin) and the results were compared to other congeneric taxa. Morphological results show an overlap of body color and tooth morphology to other known Apareiodon. The cytogenetics data showed that the 2n = 54 chromosomes, 50 m/sm + 4 st and, a ZZ/ZW sex chromosome system in Apareiodon sp. are common to other species of the genus. However, the number and chromosomal localization of the 45S ribosomal and pPh2004 satellite DNA sites, in addition to W chromosome localization of the pPh2004 appear to be exclusive cytogenetic features in Apareiodon sp. Our phylogenetic tree revealed well-supported clades and confirmed, by barcode species delimitation analysis, a new Molecular Operational Taxonomic Unit (MOTU) for Apareiodon sp. (Aripuanã River). As a whole, the above features support the occurrence of a new species of the Apareiodon, thus far unknown for the Parodontidae.

11.
Genetica ; 146(1): 123, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29260363

RESUMO

ere, we report that a paragraph from the "Discussion" section of Cioffi et al. (2011; p. 1070, 4th paragraph of column 1) was transcribed (with only minor edits) from an introductory paragraph previously published in Chromosome Research by O'Meally et al.

12.
Curr Genomics ; 19(3): 216-226, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29606909

RESUMO

BACKGROUND: Species with 'young' or nascent sex chromosomes provide unique opportunities to understand early evolutionary mechanisms (e.g. accumulation of repetitive sequences, cessation of recombination and gene loss) that drive the evolution of sex chromosomes. Among vertebrates, fishes exhibit highly diverse and a wide spectrum of sex-determining mechanisms and sex chromosomes, ranging from cryptic to highly differentiated ones, as well as, from simple to multiple sex chromosome systems. Such variability in sex chromosome morphology and composition not only exists within closely related taxa, but often within races/populations of the same species. Inside this context, the wolf fish Hoplias malabaricus offers opportunity to investigate the evolution of morphologically variable sex chromosomes within a species complex, as homomorphic to highly differentiated sex chromosome systems occur among its different karyomorphs. MATERIALS & METHODS: To discover various evolutionary stages of sex chromosomes and to compare their sequence composition among the wolf fish´s karyomorphs, we applied multipronged molecular cytogenetic approaches, including C-banding, repetitive DNAs mapping, Comparative Genomic Hybridization (CGH) and Whole Chromosomal Painting (WCP). Our study was able to characterize a cryptically differentiated XX/XY sex chromosome system in the karyomorph F of this species. CONCLUSION: The Y chromosome was clearly identified by an interstitial heterochromatic block on the short arms, primarily composed of microsatellite motifs and retrotransposons. Additionally, CGH also identified a male specific chromosome region in the same chromosomal location, implying that the accumulation of these repeats may have initiated the Y chromosome differentiation, as well as played a critical role towards the evolution and differentiation of sex chromosomes in various karyomorphs of this species.

13.
Genetica ; 144(5): 567-576, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27660254

RESUMO

Species of the Abudefduf genus (sergeant-majors) are widely distributed in the Indian, Pacific and Atlantic oceans, with large schools inhabiting rocky coastal regions and coral reefs. This genus consists of twenty recognized species are of generalist habit, showing typical characteristics of colonizers. Some populations maintain gene flow between large oceanic areas, a condition that may influence their cytogenetic features. A number of species have been shown to be invaders and able to hybridize with local species. However, cytogenetic data in this genus are restricted to few species. In this way, the present study includes the chromosomal investigation, using conventional (Giemsa staining, Ag-NOR and C-banding) and molecular (in situ mapping of six different repetitive DNA classes) approaches in four Abudefduf species from different oceanic regions (A. bengalensis and A. sexfasciatus from the Indo-Pacific, A. vaigiensis from the Indian and A. saxatilis from the Atlantic oceans, respectively), to investigate the evolutionary events associated with the chromosomal diversification in this group. All species share a similar karyotype (2n = 48; NF = 52), except A. sexfasciatus (2n = 48; NF = 50), which possesses a characteristic pericentric inversion in the NOR-bearing chromosomal pair. Mapping of repetitive sequences suggests a chromosomal conservatism in this genus. The high karyotypic similarity between allopatric species of Abudefduf may be related to the success of natural viable hybrids among species with recent secondary contact.


Assuntos
Mapeamento Cromossômico , Cromossomos , Evolução Molecular , Peixes/genética , Sequências Repetitivas de Ácido Nucleico , Animais , Feminino , Hibridização in Situ Fluorescente , Cariótipo , Masculino , Repetições de Microssatélites , RNA Ribossômico 18S/genética
14.
Genetica ; 144(2): 203-11, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26932937

RESUMO

The Dascyllus genus consists of 11 species spread over vast regions of the Indo-Pacific, showing remarkable reductions in the diploid chromosome numbers (2n). The present study analyzed the karyotypes and other chromosomal characteristics of D. trimaculatus (2n = 48; 2st + 46a; NF = 50), D. carneus (2n = 48; 2st + 46a; NF = 50) and D. aruanus (2n = 30; 18m + 2st + 10a; NF = 50) from the Thailand Gulf (Pacific Ocean) and D. melanurus (2n = 48; 2st + 46a; NF = 50) from the Andaman Sea (Indian Ocean), employing conventional cytogenetic analyses and the chromosomal mapping of repetitive DNAs, using 18S and 5S rDNA, telomeric sequences and (CA)15, (GA)15, and (CAA)10 microsatellites as probes. The C-positive heterochromatin was found in the centromeric regions of most chromosomal pairs and 18S rDNA phenotypes were single in all species. However, in D. aruanus (2n = 30), which harbors nine metacentric pairs; the 5S rDNA sites were located in the centromeric region of the shortest one. The mapping of the telomeric sequences in D. aruanus revealed the presence of interstitial telomeric sites (ITS) in the centromeric region of four metacentric pairs, with one of these pairs also displaying an additional ITS in the long arms. Distinct chromosomal markers confirmed the reduction of the 2n by chromosomal fusions, highlighting the precise characterization of these rearrangements by the cytogenetic mapping of the repetitive DNAs.


Assuntos
Evolução Molecular , Cariótipo , Perciformes/genética , Sequências Repetitivas de Ácido Nucleico , Animais , Mapeamento Cromossômico , Diploide , Feminino , Oceano Índico , Masculino , Repetições de Microssatélites , Oceano Pacífico , RNA Ribossômico 18S/genética , RNA Ribossômico 5S/genética , Análise de Sequência de DNA , Telômero/genética
15.
J Hered ; 107(4): 342-8, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27036509

RESUMO

Characterizing the abundance and genomic distribution of repetitive DNAs provides information on genome evolution, especially regarding the origin and differentiation of sex chromosomes. Triportheus fishes offer a useful model to explore the evolution of sex chromosomes, since they represent a monophyletic group in which all species share a ZZ/ZW sex chromosome system. In this study, we analyzed the distribution of 13 classes of repetitive DNA sequences by FISH, including microsatellites, rDNAs, and transposable elements in 6 Triportheus species, in order to investigate the fate of the sex-specific chromosome among them. These findings show the dynamic differentiation process of the W chromosome concerning changes in the repetitive DNA fraction of the heterochromatin. The differential accumulation of the same class of repeats on this chromosome, in both nearby and distant species, reflects the inherent dynamism of the microsatellites, as well as the plasticity that shapes the evolutionary history of the sex chromosomes, even among closely related species sharing a same sex chromosome system.


Assuntos
Caraciformes/genética , Sequências Repetitivas de Ácido Nucleico , Cromossomos Sexuais , Animais , Bandeamento Cromossômico , Mapeamento Cromossômico , Feminino , Hibridização in Situ Fluorescente , Masculino , Repetições de Microssatélites , Retroelementos
16.
J Hered ; 107(2): 173-80, 2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-26792596

RESUMO

Lutjanidae is a family of primarily marine and carnivorous fishes distributed in the Atlantic, Indian, and Pacific oceans, with enormous economic and ecological importance. In order to better clarify the conservative chromosomal evolution of Lutjanidae, we analyzed the evolutionary dynamics of 5 repetitive DNA classes in 5 Lutjanus and in 1 Ocyurus species from the Western Atlantic. The ribosomal 18S sites were generally located in a single chromosome pair, except for L. jocu and L. alexandrei where they are found in 2 pairs. In turn, the 5S rDNA sites are unique, terminal and nonsyntenic with the 18S rDNA sites. In 3 species analyzed, H3 hisDNA genes were found in 1 chromosomal pair. However, while L. jocu presented 2 H3 sites, O. chrysurus showed a noteworthy dispersion of this gene in almost all chromosomes of the karyotype. Retrotransposons Rex1 and Rex3 do not exhibit any association with the explosive distribution of H3 sequences in O. chrysurus. The low compartmentalization of Rex elements, in addition to the general nondynamic distribution of ribosomal and H3 genes, corroborate the karyotype conservatism in Lutjanidae species, also at the microstructural level. However, some "disturbing evolutionary waves" can break down this conservative scenario, as evidenced by the massive random dispersion of H3 hisDNA in the genome of O. chrysurus. The implication of the genomic expansion of H3 histone genes and their functionality remain unknown, although suggesting that they have higher evolutionary dynamics than previously thought.


Assuntos
Evolução Molecular , Peixes/genética , Histonas/genética , RNA Ribossômico 18S/genética , RNA Ribossômico 5S/genética , Retroelementos , Animais , Mapeamento Cromossômico , Feminino , Hibridização in Situ Fluorescente , Cariótipo , Masculino
18.
Genetica ; 141(7-9): 381-7, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24068425

RESUMO

Potamotrygonidae is a representative family of South American freshwater elasmobranchs. Cytogenetic studies were performed in a Potamotrygon species from the middle Negro River, Amazonas, Brazil, here named as Potamotrygon sp. C. Mitotic and meiotic chromosomes were analyzed using conventional staining techniques, C-banding, and detection of the nucleolus organizing regions (NOR) with Silver nitrate (Ag-NOR). The diploid number was distinct between sexes, with males having 2n = 67 chromosomes, karyotype formula 19m + 8sm + 10st + 30a, and fundamental number (FN) = 104, and females having 2n = 68 chromosomes, karyotype formula 20m + 8sm + 10st + 30a, and FN = 106. A large chromosome, corresponding to pair number two in the female karyotype, was missing in the male complement. Male meiotic cells had 33 bivalents plus a large univalent chromosome in metaphase I, and n = 33 and n = 34 chromosomes in metaphase II. These characteristics are consistent with a sex chromosome system of the XX/XO type. Several Ag-NOR sites were identified in both male and female karyotypes. Positive C-banding was located only in the centromeric regions of the chromosomes. This sex chromosome system, which rarely occurs in fish, is now being described for the first time among the freshwater rays of the Amazon basin.


Assuntos
Rajidae/genética , Cromossomo X/genética , Animais , Centrômero , Feminino , Cariótipo , Masculino , Caracteres Sexuais
19.
Sci Rep ; 13(1): 15756, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735233

RESUMO

The Neotropical monophyletic catfish genus Harttia represents an excellent model to study karyotype and sex chromosome evolution in teleosts. Its species split into three phylogenetic clades distributed along the Brazilian territory and they differ widely in karyotype traits, including the presence of standard or multiple sex chromosome systems in some members. Here, we investigate the chromosomal rearrangements and associated synteny blocks involved in the origin of a multiple X1X2Y sex chromosome system present in three out of six sampled Amazonian-clade species. Using 5S and 18S ribosomal DNA fluorescence in situ hybridization and whole chromosome painting with probes corresponding to X1 and X2 chromosomes of X1X2Y system from H. punctata, we confirm previous assumptions that X1X2Y sex chromosome systems of H. punctata, H. duriventris and H. villasboas represent the same linkage groups which also form the putative XY sex chromosomes of H. rondoni. The shared homeology between X1X2Y sex chromosomes suggests they might have originated once in the common ancestor of these closely related species. A joint arrangement of mapped H. punctata X1 and X2 sex chromosomes in early diverging species of different Harttia clades suggests that the X1X2Y sex chromosome system may have formed through an X chromosome fission rather than previously proposed Y-autosome fusion.


Assuntos
Peixes-Gato , Animais , Peixes-Gato/genética , Hibridização in Situ Fluorescente , Filogenia , Cromossomos Sexuais/genética , Cromossomo Y
20.
Front Genet ; 14: 1226222, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37576550

RESUMO

The remarkable fish biodiversity encompasses also great sex chromosome variability. Harttia catfish belong to Neotropical models for karyotype and sex chromosome research. Some species possess one of the three male-heterogametic sex chromosome systems, XY, X1X2Y or XY1Y2, while other members of the genus have yet uncharacterized modes of sex determination. Particularly the XY1Y2 multiple sex chromosome system shows a relatively low incidence among vertebrates, and it has not been yet thoroughly investigated. Previous research suggested two independent X-autosome fusions in Harttia which led to the emergence of XY1Y2 sex chromosome system in three of its species. In this study, we investigated evolutionary trajectories of synteny blocks involved in this XY1Y2 system by probing six Harttia species with whole chromosome painting (WCP) probes derived from the X (HCA-X) and the chromosome 9 (HCA-9) of H. carvalhoi. We found that both painting probes hybridize to two distinct chromosome pairs in Amazonian species, whereas the HCA-9 probe paints three chromosome pairs in H. guianensis, endemic to Guyanese drainages. These findings demonstrate distinct evolutionary fates of mapped synteny blocks and thereby elevated karyotype dynamics in Harttia among the three evolutionary clades.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA