Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Microsc Microanal ; 23(1): 46-55, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28137345

RESUMO

We present liquid-cell transmission electron microscopy (liquid-cell TEM) imaging of fixed and non-fixed prostate cancer cells (PC3 and LNCaP) with high resolution in a custom developed silicon nitride liquid cell. Fixed PC3 cells were imaged for 90-120 min without any discernable damage. High contrast on the cellular structures was obtained even at low electron doses (~2.5 e-/nm2 per image). The images show distinct structures of cell compartments (nuclei and nucleoli) and cell boundaries without any further sample embedding, dehydration, or staining. Furthermore, we observed dynamics of vesicles trafficking from the cell membrane in consecutive still frames in a non-fixed cell. Our findings show that liquid-cell TEM, operated at low electron dose, is an excellent tool to investigate dynamic events in non-fixed cells with enough spatial resolution (few nm) and natural amplitude contrast to follow key intracellular processes.


Assuntos
Microfluídica/métodos , Microscopia Eletrônica de Transmissão/métodos , Nanopartículas/química , Antígenos de Superfície , Técnicas de Cultura de Células , Linhagem Celular Tumoral/ultraestrutura , Elétrons , Glutamato Carboxipeptidase II , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Microtecnologia/métodos , Neoplasias da Próstata , Compostos de Silício , Coloração e Rotulagem
2.
Langmuir ; 32(31): 7897-907, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27458652

RESUMO

The use of mixed ligand layers including poly(ethylene glycol)-based ligands for the functionalization of nanoparticles is a very popular strategy in the context of nanomedicine. However, it is challenging to control the composition of the ligand layer and maintain high colloidal and chemical stability of the conjugates. A high level of control and stability are crucial for reproducibility, upscaling, and safe application. In this study, gold nanoparticles with well-defined mixed ligand layers of α-methoxypoly(ethylene glycol)-ω-(11-mercaptoundecanoate) (PEGMUA) and 11-mercaptoundecanoic acid (MUA) were synthesized and characterized by ATR-FTIR spectroscopy and gel electrophoresis. The colloidal and chemical stability of the conjugates was tested by dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), and UV/vis spectroscopy based experiments, and their interactions with cells were analyzed by elemental analysis. We demonstrate that the alkylene spacer in PEGMUA is the key feature for the controlled synthesis of mixed layer conjugates with very high colloidal and chemical stability and that a controlled synthesis is not possible using regular PEG ligands without the alkylene spacer. With the results of our stability tests, the molecular structure of the ligands can be clearly linked to the colloidal and chemical stabilization. We expect that the underlying design principle can be generalized to improve the level of control in nanoparticle surface chemistry.

3.
J Phys Chem Lett ; 6(22): 4487-92, 2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26509279

RESUMO

Base-pairing stability in DNA-gold nanoparticle (DNA-AuNP) multimers along with their dynamics under different electron beam intensities was investigated with in-liquid transmission electron microscopy (in-liquid TEM). Multimer formation was triggered by hybridization of DNA oligonucleotides to another DNA strand (Hyb-DNA) related to the concept of DNA origami. We analyzed the degree of multimer formation for a number of samples and a series of control samples to determine the specificity of the multimerization during the TEM imaging. DNA-AuNPs with Hyb-DNA showed an interactive motion and assembly into 1D structures once the electron beam intensity exceeds a threshold value. This behavior was in contrast with control studies with noncomplementary DNA linkers where statistically significantly reduced multimerization was observed and for suspensions of citrate-stabilized AuNPs without DNA, where we did not observe any significant motion or aggregation. These findings indicate that DNA base-pairing interactions are the driving force for multimerization and suggest a high stability of the DNA base pairing even under electron exposure.


Assuntos
DNA/química , Ouro/química , Nanopartículas Metálicas/química , Microscopia Eletrônica de Transmissão , Citratos/química , Estabilidade de Medicamentos , Modelos Moleculares , Conformação de Ácido Nucleico , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA