Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Soft Matter ; 9(1): 241-254, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25328534

RESUMO

Polymer-nanoparticle composites play a vital role in ongoing materials development. The behavior of the glass transition of these materials is important for their processing and applications, and also represents a problem of fundamental physical interest. Changes of the polymer glass transition temperature Tg due to nanoparticles have been fairly well catalogued, but the breadth of the transition and how rapidly transport properties vary with temperature T - termed the fragility m of glass-formation - is comparatively poorly understood. In the present work, we calculate both Tg and m of a model polymer nanocomposite by molecular dynamics simulations. We systematically consider how Tg and m vary both for the material as a whole, as well as locally, for a range of nanoparticle (NP) concentrations and two polymer-NP interactions. We find large positive and negative changes in Tg and m that can be interpreted in terms of the Adam-Gibbs model of glass-formation, where the scale of the cooperative motion is identified with the scale of string-like cooperative motion. This provides a molecular perpective of fragility changes due to the addition of NPs and for glass formation more generally. We also contrast the behavior along isobaric and isochoric approaches to Tg , since these differing paths can be important to compare experiments (isobaric) and simulations (very often isochoric). Our findings have practical implications for understanding the properties of nanocomposites and fundamental significance for understanding the properties glass-forming materials more broadly.

2.
Artigo em Inglês | MEDLINE | ID: mdl-30334744

RESUMO

Recently, the National Institute of Standards and Technology has developed a database of three-dimensional (3D) stem cell morphologies grown in ten different scaffolds to study the effect of the cells' environments on their morphologies. The goal of this work is to study the polarizability tensors of these stem cell morphologies, using three independent computational techniques, to quantify the effect of the environment on the electric properties of these cells. We show excellent agreement between the three techniques, validating the accuracy of our calculations. These computational methods allowed us to investigate different meshing resolutions for each stem cell morphology. After validating our results, we use a fast and accurate Pad' approximation formulation to calculate the polarizability tensors of stem cells for any contrast value between their dielectric permittivity and the dielectric permittivity of their environment. We also performed statistical analysis of our computational results to identify which environment generates cells with similar electric properties. The computational analysis and the results reported herein can be used for shedding light on the response of stem cells to electric fields in applications such as dielectrophoresis and electroporation and for calculating the electric properties of similar biological structures with complex 3D shapes.

3.
Biomed Mater ; 13(2): 025012, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29072579

RESUMO

In living systems, it is frequently stated that form follows function by virtue of evolutionary pressures on organism development, but in the study of how functions emerge at the cellular level, function often follows form. We study this chicken versus egg problem of emergent structure-property relationships in living systems in the context of primary human bone marrow stromal cells cultured in a variety of microenvironments that have been shown to cause distinct patterns of cell function and differentiation. Through analysis of a publicly available catalog of three-dimensional (3D) cell shape data, we introduce a family of metrics to characterize the 'form' of the cell populations that emerge from a variety of diverse microenvironments. In particular, measures of form are considered that are expected to have direct significance for cell function, signaling and metabolic activity: dimensionality, polarizability and capacitance. Dimensionality was assessed by an intrinsic measure of cell shape obtained from the polarizability tensor. This tensor defines ellipsoids for arbitrary cell shapes and the thinnest dimension of these ellipsoids, P 1, defines a reference minimal scale for cells cultured in a 3D microenvironment. Polarizability governs the electric field generated by a cell, and determines the cell's ability to detect electric fields. Capacitance controls the shape dependence of the rate at which diffusing molecules contact the surface of the cell, and this has great significance for inter-cellular signaling. These results invite new approaches for designing scaffolds which explicitly direct cell dimensionality, polarizability and capacitance to guide the emergence of new cell functions derived from the acquired form.


Assuntos
Técnicas de Cultura de Células/métodos , Diferenciação Celular/efeitos dos fármacos , Microambiente Celular , Células-Tronco Mesenquimais/citologia , Alicerces Teciduais/química , Algoritmos , Animais , Núcleo Celular/metabolismo , Forma Celular , Eletricidade , Fibrinogênio/química , Humanos , Camundongos , Microscopia Confocal , Nanofibras/química , Poliestirenos/química , Probabilidade , Transdução de Sinais , Trombina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA