Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 119(15): 157701, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-29077458

RESUMO

We report on a "giant" quantum Hall effect plateau in a graphene-based field-effect transistor where graphene is capped by a layer of the van der Waals crystal InSe. The giant quantum Hall effect plateau arises from the close alignment of the conduction band edge of InSe with the Dirac point of graphene. This feature enables the magnetic-field- and electric-field-effect-induced transfer of charge carriers between InSe and the degenerate Landau level states of the adjacent graphene layer, which is coupled by a van der Waals heterointerface to the InSe.

2.
Nat Commun ; 10(1): 2639, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31201328

RESUMO

Hexagonal boron nitride is a large band-gap insulating material which complements the electronic and optical properties of graphene and the transition metal dichalcogenides. However, the intrinsic optical properties of monolayer boron nitride remain largely unexplored. In particular, the theoretically expected crossover to a direct-gap in the limit of the single monolayer is presently not confirmed experimentally. Here, in contrast to the technique of exfoliating few-layer 2D hexagonal boron nitride, we exploit the scalable approach of high-temperature molecular beam epitaxy to grow high-quality monolayer boron nitride on graphite substrates. We combine deep-ultraviolet photoluminescence and reflectance spectroscopy with atomic force microscopy to reveal the presence of a direct gap of energy 6.1 eV in the single atomic layers, thus confirming a crossover to direct gap in the monolayer limit.

3.
Sci Rep ; 7(1): 6598, 2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28747805

RESUMO

We report the use of a novel atomic carbon source for the molecular beam epitaxy (MBE) of graphene layers on hBN flakes and on sapphire wafers at substrate growth temperatures of ~1400 °C. The source produces a flux of predominantly atomic carbon, which diffuses through the walls of a Joule-heated tantalum tube filled with graphite powder. We demonstrate deposition of carbon on sapphire with carbon deposition rates up to 12 nm/h. Atomic force microscopy measurements reveal the formation of hexagonal moiré patterns when graphene monolayers are grown on hBN flakes. The Raman spectra of the graphene layers grown on hBN and sapphire with the sublimation carbon source and the atomic carbon source are similar, whilst the nature of the carbon aggregates is different - graphitic with the sublimation carbon source and amorphous with the atomic carbon source. At MBE growth temperatures we observe etching of the sapphire wafer surface by the flux from the atomic carbon source, which we have not observed in the MBE growth of graphene with the sublimation carbon source.

4.
J Phys Chem B ; 110(12): 6110-4, 2006 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-16553423

RESUMO

A stable hydrogen-bonding junction is formed between 3,4,9,10-perylene-3,4,9,10-tetracarboxylic-dianhydride (PTCDA) and 1,3,5-triazine-2,4,6-triamine (melamine). This bimolecular system was studied on the Ag-Si(111) square root 3 x square root R 30 degrees surface at sub-monolayer coverage, and two distinct phases are observed. A hexagonal lattice is formed that is stabilized by hydrogen bonding between PTCDA and melamine. This phase, in which melamine acts as a 3-fold vertex, is a close analogue to the 3,4,9,10-perylene-3,4,9,10-tetracarboxylic-diimide-melamine network reported recently. To our knowledge this hydrogen-bonding junction has not been previously observed and might not be expected due to lone pair repulsion. However we confirm that this combination is stable using ab initio methods. In the second intermixed phase parallel rows of PTCDA molecules coexist with an array of melamine molecules, and we propose a model for this structure.

5.
J Phys Chem B ; 110(25): 12207-10, 2006 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-16800538

RESUMO

We have investigated the coadsorption of perylene tetracarboxylic dianhydride (PTCDA) and tetraaminobenzene (TAB) on the Ag/Si(111)-square root(3) x square root(3) R30 degree surface using scanning tunneling microscopy. At room temperature, PTCDA islands with square and herringbone ordering are formed which, on exposure to TAB, are converted into an intermixed phase in which PTCDA and TAB form alternating rows. From our images, we determine the relative placement of TAB and PTCDA molecules and conclude that the row structure is stabilized by hydrogen bonding between dianhydride and diamine groups. We confirm that this hydrogen bonding junction is stable using ab initio calculations and show that the proposed geometry is consistent with calculated intermolecular dimensions.

6.
J Phys Chem B ; 110(25): 12539-42, 2006 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-16800583

RESUMO

We demonstrate the formation of intermixed phases and self assembled molecular templates on the Au(111) surface. The templates are stabilized by hydrogen bonding between melamine molecules with trigonal symmetry and linear PTCDI (perylene tetra-carboxylic di-imide) molecules. When annealed, these molecules spontaneously form either a chiral intermixed phase or a honeycomb arrangement in which vertexes and edges correspond respectively to melamine and PTCDI molecules. We also observe minority phases with more complex intermolecular junctions. The use of these networks as templates is demonstrated by the controlled capture of fullerenes within the pores of the network to form dimers, hexamers, and heptamers. Our results confirm that bimolecular templates can be realized on a range of substrates.

7.
J Phys Chem B ; 109(24): 12167-74, 2005 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-16852501

RESUMO

We have investigated the ordered phases of the perylene derivatives perylene-3,4,9,10-tetracarboxylic-3,4,9,10-dianhydride (PTCDA) and the imide analogue PTCDI on the Ag-Si(111)square root(3) x square root(3)R30 degrees surface using scanning tunneling microscopy. We find that PTCDA forms square, hexagonal, and herringbone phases, which coexist on the surface. The existence of a square phase on a hexagonal surface is of particular interest and is a result of a near commensurability between the molecular dimensions and the surface lattice. Contrast variations across the square islands arise from PTCDA molecules binding to different sites on the surface. PTCDI on Ag-Si(111)square root(3) x square root(3)R30 degrees forms extended rows, as well as two-dimensional islands, both of which are stabilized by hydrogen bonding mediated by the presence of imide groups. We present models for the molecular arrangements in all these phases and highlight the role of hydrogen bonding in controlling this order.

8.
Phys Rev Lett ; 64(17): 2058-2061, 1990 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-10041566
9.
Phys Rev Lett ; 100(15): 156101, 2008 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-18518130

RESUMO

Surface templating via self-assembly of hydrogen-bonded molecular networks is a rapidly developing bottom-up approach in nanotechnology. Using the melamine-PTCDI molecular system as an example we show theoretically that the network stability in the parameter space of temperature versus molecular coupling anisotropy is highly restricted. Our kinetic Monte Carlo simulations predict a structural stability diagram that contains domains of stability of an open honeycomb network, a compact phase, and a high-temperature disordered phase. The results are in agreement with recent experiments, and reveal a relationship between the molecular size and the network stability, which may be used to predict an upper limit on pore-cavity sizes.


Assuntos
Imidas/química , Modelos Químicos , Nanoestruturas/química , Perileno/análogos & derivados , Triazinas/química , Anisotropia , Simulação por Computador , Ligação de Hidrogênio , Método de Monte Carlo , Perileno/química
10.
Langmuir ; 21(5): 2038-41, 2005 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-15723508

RESUMO

We have investigated the growth of molecular clusters in confined geometries defined by a bimolecular supramolecular network. This framework provides a regular array of identical nanoscale traps in which further deposited molecules nucleate cluster growth. For the higher fullerene, C84, molecules aggregate into close packed assemblies with an orientation which switches when the cluster size increases by one molecule. This change is controlled by the interactions between the molecules and the confining boundaries of the network pore. We show that, following nucleation of small clusters, further growth requires a reconfiguration of previously captured molecules resulting in a transition between nanoscale phases with different ordering.

11.
Phys Rev Lett ; 94(14): 146104, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15904082

RESUMO

The response of a C60 molecule to manipulation across a surface displays a long range periodicity which corresponds to a rolling motion. A period of three or four lattice constants is observed and is accompanied by complex subharmonic structure due to molecular hops through a regular, repeating sequence of adsorption states. Combining experimental data and ab initio calculations, we show that this response corresponds to a rolling motion in which two of the four Si-C60 covalent bonds act as a pivot over which the molecule rotates while moving through one lattice constant and identify a sequence of C60 bonding configurations that accounts for the periodic structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA