RESUMO
We report optical absorption and luminescence measurements in pure and trivalent neodymium (Nd3+) doped LaVO4 crystals up to 25 GPa. Nd3+ luminescence has been employed as a tool to follow the structural changes in the crystal. We also present band-structure and crystal-field calculations that provide the theoretical framework to accurately explain the observed experimental results. In particular, both optical absorption and luminescence measurements evidence that a phase transition takes place close to 12 GPa. They also provide information on the pressure dependence of the band-gap as well as the emission lines under compression. We found drastic changes in the optical properties of LaVO4 when the phase transition to a BaWO4-II structure occurs, which can be related to changes in the coordination number of vanadium ions and in the local sites of Nd3+. Reported results are analyzed in comparison with those of previous X-ray diffraction and Raman experiments, as well as with the features of related compounds. For the first time, a consistent picture is reported explaining the behavior of the optical and electronic properties of LaVO4 at high-pressures.
RESUMO
We report on stable, long-term immobilization and localization of a single colloidal Er(3+)/Yb(3+) codoped upconverting fluorescent nanoparticle (UCNP) by optical trapping with a single infrared laser beam. Contrary to expectations, the single UCNP emission differs from that generated by an assembly of UCNPs. The experimental data reveal that the differences can be explained in terms of modulations caused by radiation-trapping, a phenomenon not considered before but that this work reveals to be of great relevance.
RESUMO
Laser slope and threshold properties have been investigated in Nd stoichiometric crystal powders as a function of pump wavelength and pump beam size. Above a given pumped area, the laser slope and the threshold pump energy per unit area are invariant and the known theoretical expressions are well fulfilled. Likewise, the size of the stimulated emission zone as a function of the pump beam area has been measured, also showing a different behavior above or below a given pumped area value which coincides with the one mentioned above. In conclusion, two different operating regimes with different performances are clearly observed as a function of the pump beam area.
RESUMO
Monoclinic Yb-sensitized (Tm, Ho)-doped KLu(WO4)2 nanocrystals of ~100 nm size have been synthesized by the modified Pechini sol-gel method. Their diode laser near-infrared (~980 nm) excited upconversion emission properties have been characterized at power densities in the range 30-355 W cm(-2). Bright white light composed of blue ~475 nm, green ~540 nm, and red ~650 nm emissions, corresponding to Tm(3+ 1)G4 â (3)H6, Ho(3+ 5)S2, (5)F4 â (5)I8, and Ho(3+ 5)F5 â (5)I8 electronic transitions, respectively, was generated by adjusting the Yb, Tm, and Ho contents in KLu(WO4)2 nanocrystalline samples. Chromaticity coordinates of the emitted white light can be tuned by modifying the excitation power density. The effect of Tm and Ho on the luminescence dynamics has been described by analyzing the upconverted emission intensity dependence on the excitation power, as well as from Stokes and decay time measurements. The effect on upconversion properties of further codoping with Eu in these (Tm, Ho, Yb)-doped KLu(WO4)2 nanocrystals has also been studied.
Assuntos
Európio/química , Hólmio/química , Luz , Lutécio/química , Nanopartículas/química , Túlio/química , Tungstênio/química , Itérbio/química , Tamanho da PartículaRESUMO
The COMPASS Collaboration at CERN has investigated the π- γ â π- π- π+ reaction at center-of-momentum energy below five pion masses, sqrt[s]<5m(π), embedded in the Primakoff reaction of 190 GeV pions impinging on a lead target. Exchange of quasireal photons is selected by isolating the sharp Coulomb peak observed at smallest momentum transfers, t'<0.001 GeV2/c2. Using partial-wave analysis techniques, the scattering intensity of Coulomb production described in terms of chiral dynamics and its dependence on the 3π-invariant mass m(3π)=sqrt[s] were extracted. The absolute cross section was determined in seven bins of sqrt[s] with an overall precision of 20%. At leading order, the result is found to be in good agreement with the prediction of chiral perturbation theory over the whole energy range investigated.
RESUMO
Room temperature random lasing action is demonstrated for the first time in a low concentrated neodymium doped vanadate crystal powder. Laser threshold and emission efficiency are comparable to the ones obtained in stoichiometric borate crystal powders. The present investigation provides a complete picture of the random lasing characteristics of Nd-doped vanadate powder both in the spectral and temporal domain, together with a simplified model which accounts for the most relevant features of the random laser.
Assuntos
Cristalização , Lasers , Luz , Neodímio/química , Pós , Espectrofotometria/instrumentação , Desenho de Equipamento , Espalhamento de RadiaçãoRESUMO
Since the crystal-field strength at the Cr(3+) site is very close to the excited-state crossover (ESCO), this work investigates the optical properties of Cr(3+)-doped Gd(3)Ga(5)O(12) (GGG) nanoparticles as a function of temperature and pressure in order to establish the effect of the ESCO on the optical behaviour of nanocrystalline GGG. Luminescence, time-resolved emission and lifetime measurements have been performed on GGG:0.5% Cr(3+) nanoparticles in the 25-300 K temperature range, as well as under hydrostatic pressure up to 20 GPa. We show how low temperature and high pressure progressively transforms Cr(3+)(4)T(2) --> (4)A(2) broadband emission into a ruby-like (2)E --> (4)A(2) luminescence. This behaviour together with the lifetime dependence on pressure and temperature are explained on the basis of the spin-orbit interaction between the (4)T(2) and (2)E states of Cr(3+).
RESUMO
Zircon-type NdVO4and scheelite-type PrVO4have been studied by means of Raman spectroscopy up to approximately 20 GPa. In the first compound, zircon-scheelite and scheelite-fergusonite phase transitions are reported at 6.4(3) and 19.6(4) GPa, respectively. In the case of scheelite-type PrVO4, a reversible phase transition to a PbWO4-III structure is observed at 16.8(5) GPa. In both cases, a scheelite-type structure is recovered in a metastable state at low pressures. The pressure evolution of the Raman modes is also reported. Our experimental findings are supported byab initiocalculations, which allowed us to discuss the role of mechanic and dynamical instabilities in the phase transition mechanisms.
RESUMO
The COMPASS experiment at the CERN SPS has studied the diffractive dissociation of negative pions into the π- π- π+ final state using a 190 GeV/c pion beam hitting a lead target. A partial wave analysis has been performed on a sample of 420,000 events taken at values of the squared 4-momentum transfer t' between 0.1 and 1 GeV2/c2. The well-known resonances a1(1260), a2(1320), and π2(1670) are clearly observed. In addition, the data show a significant natural-parity exchange production of a resonance with spin-exotic quantum numbers J(PC)=1-+ at 1.66 GeV/c2 decaying to ρπ. The resonant nature of this wave is evident from the mass-dependent phase differences to the J(PC)=2-+ and 1++ waves. From a mass-dependent fit a resonance mass of (1660±10(-64)(+0)) MeV/c2 and a width of (269±21(-64)(+42)) MeV/c2 are deduced, with an intensity of (1.7±0.2)% of the total intensity.
RESUMO
Nanocrystalline Lu(3)Ga(5)O(12), with average particle sizes of 40 nm, doped with a wide variety of luminescent trivalent lanthanide ions have been prepared using a sol-gel technique. The structural and morphological properties of the powders have been investigated by x-ray powder diffraction, high resolution transmission electron microscopy and Raman spectroscopy. Structural data have been refined and are presented for Pr(3+), Eu(3+), Gd(3+), Ho(3+), Er(3+) and Tm(3+) dopants, while room temperature excited luminescence spectra and emission decay curves of Eu(3+)-, Tm(3+)- and Ho(3+)-doped Lu(3)Ga(5)O(12) nanocrystals have been measured and are discussed. The Eu(3+) emission spectrum shows typical bands due to 5D(0)-->7F(J) (J = 0, 1, 2, 3, 4) transitions and the broadening of these emission bands with the non-exponential behaviour of the decay curves indicates the presence of structural disorder around the lanthanide ions. Lanthanide-doped nanocrystalline Lu(3)Ga(5)O(12) materials show better luminescence intensities compared to Y(2)O(3), Gd(3)Ga(5)O(12) and Y(3)Al(5)O(12) nanocrystalline hosts. Moreover, the upconversion emission intensity in the blue-green region for the Tm(3+)- and Ho(3+)-doped samples shows a significant increase upon 647.5 nm excitation with respect to other common oxide hosts doped with the same lanthanide ions.
RESUMO
In recent years identification of the geographical origin of food has grown more important as consumers have become interested in knowing the provenance of the food that they purchase and eat. Certification schemes and labels have thus been developed to protect consumers and genuine producers from the improper use of popular brand names or renowned geographical origins. As the tomato is one of the major components of what is considered to be the healthy Mediterranean diet, it is important to be able to determine the geographical origin of tomatoes and tomato-based products such as tomato sauce. The aim of this work is to develop an analytical method to determine rare earth elements (RRE) for the control of the geographic origin of tomatoes. The content of REE in tomato plant samples collected from an agricultural area in Piacenza, Italy, was determined, using four different digestion procedures with and without HF. Microwave dissolution with HNO3 + H2O2 proved to be the most suitable digestion procedure. Inductively coupled plasma quadrupole mass spectrometry (ICPQMS) and inductively coupled plasma sector field plasma mass spectrometry (ICPSFMS) instruments, both coupled with a desolvation system, were used to determine the REE in tomato plants in two different laboratories. A matched calibration curve method was used for the quantification of the analytes. The detection limits (MDLs) of the method ranged from 0.03 ng g(-1) for Ho, Tm, and Lu to 2 ng g(-1) for La and Ce. The precision, in terms of relative standard deviation on six replicates, was good, with values ranging, on average, from 6.0% for LREE (light rare earth elements) to 16.5% for HREE (heavy rare earth elements). These detection limits allowed the determination of the very low concentrations of REE present in tomato berries. For the concentrations of REE in tomato plants, the following trend was observed: roots > leaves > stems > berries.
Assuntos
Espectrometria de Massas/métodos , Metais Terras Raras/análise , Solanum lycopersicum/química , Estruturas Vegetais/químicaRESUMO
Photoluminescence and time-resolved photoluminescence spectra of YVO(4) doped with Pr(3+) obtained at high hydrostatic pressure up to 76 kbar applied in a diamond anvil cell are presented. At pressures lower than 60 kbar the steady state emission spectra consist of sharp lines related to the [Formula: see text] transition in Pr(3+). At pressures above 68 kbar the Pr(3+) emission intensity decreases and the corresponding bands are replaced by a broad band peaking at 19 500 cm(-1) attributed to perturbed VO(4)(3-) host luminescence. The quenching of the [Formula: see text] emission has been attributed to nonradiative transition to the charge transfer exciton trapped at Pr(3+) ion. The recovering of the VO(4)(3-) host luminescence at high pressure has been attributed to energy transfer from a Pr(3+) trapped exciton (PTE) to the host YVO(4). The kinetics of such a process is analyzed using the model of PTE considered as a Pr(4+) + electron bound by the Coulomb potential at the delocalized Rydberg states.
RESUMO
Room temperature angle dispersive powder x-ray diffraction experiments on zircon-type NdVO4 were performed for the first time under quasi-hydrostatic conditions up to 24.5 GPa. The sample undergoes two phase transitions at 6.4 and 19.9 GPa. Our results show that the first transition is a zircon-to-scheelite-type phase transition, which has not been reported before, and contradicts previous non-hydrostatic experiments. In the second transition, NdVO4 transforms into a fergusonite-type structure, which is a monoclinic distortion of scheelite-type. The compressibility and axial anisotropy of the different polymorphs of NdVO4 are reported. A direct comparison of our results with former experimental and theoretical studies on other rare-earth orthovanadates found in literature highlights the importance of the role played by non-hydrostatic stresses in their high-pressure structural behavior.
RESUMO
This article reports the results of a study, conducted in the framework of the scientific activities of the Italian Society for Reference Values, aimed at defining reference values of urinary trans,trans-muconic acid (t,t-MA) in the general population not occupationally exposed to benzene. t,t-MA concentrations detected in 376 subjects of the resident population in three areas of Italy, two in central (Florence and southern Tuscany) and one in northern Italy (Padua), by three laboratories, compared by repeated interlaboratory controls, showed an interval of 14.4-225.0 microg/L (5th-95th percentile) and a geometric mean of 52.5 microg/L. The concentrations measured were influenced by tobacco smoking in a statistically significant way: Geometric mean concentrations were 44.8 microg/L and 76.1 microg/Ll in nonsmokers (264 subjects) and smokers (112 subjects), respectively. In the nonsmoking population, a significant influence of gender was found when concentrations were corrected for urinary creatinine, geometric mean concentrations being 36.7 microg/g creatinine in males (128 subjects) and 44.7 microg/g creatinine in females (136 subjects). The place of residence of subjects did not seem to influence urinary excretion of the metabolite, although personal inhalation exposure to benzene over a 24-h period showed slightly higher concentrations in Padua and Florence (geometric means of 6.5 microg/m(3) and 6.6 microg/m(3), respectively) than in southern Tuscany (geometric mean of 3.9 microg/m(3)). Concentration of t,t-MA in urine samples collected at the end of personal air sampling showed little relationship to personal inhalation exposure to benzene, confirming the importance of other factors in determining excretion of t,t-MA when concentrations in personal air samples are very low.
Assuntos
Benzeno/metabolismo , Fumar/metabolismo , Ácido Sórbico/análogos & derivados , Urina/química , Adulto , Poluição do Ar/análise , Análise de Variância , Feminino , Humanos , Exposição por Inalação , Itália , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Valores de Referência , Ácido Sórbico/metabolismo , Ácido Sórbico/normasRESUMO
Monazite-type BiPO4, LaPO4, CePO4, and PrPO4 have been studied under high pressure by ab initio simulations and Raman spectroscopy measurements in the pressure range of stability of the monazite structure. A good agreement between experimental and theoretical Raman-active mode frequencies and pressure coefficients has been found which has allowed us to discuss the nature of the Raman-active modes. Besides, calculations have provided us with information on how the crystal structure is modified by pressure. This information has allowed us to determine the equation of state and the isothermal compressibility tensor of the four studied compounds. In addition, the information obtained on the polyhedral compressibility has been used to explain the anisotropic axial compressibility and the bulk compressibility of monazite phosphates. Finally, we have carried out a systematic discussion on the high-pressure behavior of the four studied phosphates in comparison to results of previous studies.
RESUMO
The luminescence of Nd(3+) ions in Nd(x)Y(1-x)Al(3)(BO(3))(4) (Nd:YAB) single crystals has been investigated as a function of the neodymium concentration in order to evidence the relation between the structural and spectroscopic properties in this nonlinear laser system. The analysis of the experimental data allowed us to individuate four different composition ranges. For moderate concentrations (x<0.2) the lattice parameters are nearly constant, and the emission spectra arise from Nd(3+) ions in unperturbed crystal sites. For concentrations in the 0.2
RESUMO
Boron (B)- and vanadium (V)-doped TiO(2) photocatalysts were synthesized using modified sol-gel reaction processes and characterized by X-ray diffraction (XRD), Raman spectroscopy and N(2) physisorption (BET). The photocatalytic activities were evaluated by monitoring the degradation of methylene blue (MB). The results showed that the materials possess high surface area. The addition of B favored the transformation of anatase to rutile, while in the presence of V, anatase was the only phase detected. The MB degradation on V-doped TiO(2) was significantly affected by the preparation method. In fact while the presence of V in the bulk did not influence strongly the photoreactivity under visible irradiation, an increase of surface V doping lead to improved photodegradation of MB. The degradation of MB dye indicated that the photocatalytic activities of TiO(2) increased as the boron doping increased, with high conversion efficiency for 9mol% B doping.
Assuntos
Boro/química , Titânio/química , Vanádio/química , Adsorção , Catálise , Corantes/química , Corantes/efeitos da radiação , Azul de Metileno/química , Azul de Metileno/efeitos da radiação , Fotoquímica , Raios UltravioletaRESUMO
The compositional and concentration dependence of luminescence of the (4)F(3/2)-->(4)I(J) (J=13/2, 11/2 and 9/2) transitions in four Nd(3+)-doped tellurite based glasses has been studied. The free-ion energy levels obtained for 60TeO(2)+39ZnO(2)+1.0Nd(2)O(3) (TZN10) glass have been analysed using the free-ion Hamiltonian model and compared with similar results obtained for Nd(3+):glass systems. The absorption spectrum of TZN10 glass has been analysed using the Judd-Ofelt theory. Relatively longer decay rates have been obtained for Nd(3+)-doped phosphotellurite glasses. The emission characteristics of the (4)F(3/2)-->(4)I(11/2) transition, of the Nd(3+):TZN10 glass, are found to be comparable to those obtained for Nd(3+):phosphate laser glasses. The non-exponential shape of the emission decay curves for the (4)F(3/2)-->(4)I(11/2) transition is attributed to the presence of energy transfer processes between the Nd(3+) ions.
Assuntos
Vidro/química , Íons , Neodímio/química , Espectrometria de Fluorescência , Telúrio/química , FluorescênciaRESUMO
Zircon-type holmium phosphate (HoPO4) and thulium phosphate (TmPO4) have been studied by single-crystal x-ray diffraction and ab initio calculations. We report on the influence of pressure on the crystal structure, and on the elastic and thermodynamic properties. The equation of state for both compounds is accurately determined. We have also obtained information on the polyhedral compressibility which is used to explain the anisotropic axial compressibility and the bulk compressibility. Both compounds are ductile and more resistive to volume compression than to shear deformation at all pressures. Furthermore, the elastic anisotropy is enhanced upon compression. Finally, the calculations indicate that the possible causes that make the zircon structure unstable are mechanical instabilities and the softening of a silent B 1u mode.
RESUMO
Absorption and emission properties and fluorescence lifetimes for the [Formula: see text] transition of Nd(3+) ions embedded in P(2)O(5)-K(2)O-MgO-Al(2)O(3) (PKMA)-based glasses modified with AlF(3) and BaF(2) are reported at room temperature. The observed energy levels of Nd(3+) ions in these glasses have been analysed through a semi-empirical free-ion Hamiltonian model. The spin-orbit interaction and net electrostatic interaction experienced by the Nd(3+) ions follow the trend as PKMA>PKMA+AlF(3)> PKMA+BaF(2) glasses. Judd-Ofelt analysis has been carried out on the absorption spectra of 1.0 mol% Nd(3+)-doped glasses to predict the radiative properties for the fluorescent levels of the Nd(3+) ion. Branching ratios and stimulated emission cross-sections show that the [Formula: see text] transition of the glasses under investigation has the potential for laser applications. The Inokuti-Hirayama model has been applied to investigate the non-radiative relaxation of the Nd(3+) ion emitting state, (4)F(3/2). Based on the decay curve analysis, concentration quenching of the (4)F(3/2) emission has been attributed to a cross-relaxation process between the Nd(3+) ions.