Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nat Immunol ; 22(10): 1245-1255, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34556884

RESUMO

Innate lymphoid cells (ILCs) are guardians of mucosal immunity, yet the transcriptional networks that support their function remain poorly understood. We used inducible combinatorial deletion of key transcription factors (TFs) required for ILC development (RORγt, RORα and T-bet) to determine their necessity in maintaining ILC3 identity and function. Both RORγt and RORα were required to preserve optimum effector functions; however, RORα was sufficient to support robust interleukin-22 production among the lymphoid tissue inducer (LTi)-like ILC3 subset, but not natural cytotoxicity receptor (NCR)+ ILC3s. Lymphoid tissue inducer-like ILC3s persisted with only selective loss of phenotype and effector functions even after the loss of both TFs. In contrast, continued RORγt expression was essential to restrain transcriptional networks associated with type 1 immunity within NCR+ ILC3s, which coexpress T-bet. Full differentiation to an ILC1-like population required the additional loss of RORα. Together, these data demonstrate how TF networks integrate within mature ILCs after development to sustain effector functions, imprint phenotype and restrict alternative differentiation programs.


Assuntos
Imunidade Inata/imunologia , Linfócitos/imunologia , Animais , Diferenciação Celular/imunologia , Linhagem da Célula/imunologia , Células Cultivadas , Feminino , Regulação da Expressão Gênica/imunologia , Imunidade nas Mucosas/imunologia , Tecido Linfoide/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptor 1 Desencadeador da Citotoxicidade Natural/imunologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Proteínas com Domínio T/imunologia , Fatores de Transcrição/imunologia
2.
Nucleic Acids Res ; 51(19): 10344-10363, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37702072

RESUMO

Transcription enhancers are essential activators of V(D)J recombination that orchestrate non-coding transcription through complementary, unrearranged gene segments. How transcription is coordinately increased at spatially distinct promoters, however, remains poorly understood. Using the murine immunoglobulin lambda (Igλ) locus as model, we find that three enhancer-like elements in the 3' Igλ domain, Eλ3-1, HSCλ1 and HSE-1, show strikingly similar transcription factor binding dynamics and close spatial proximity, suggesting that they form an active enhancer hub. Temporal analyses show coordinate recruitment of complementary V and J gene segments to this hub, with comparable transcription factor binding dynamics to that at enhancers. We find further that E2A, p300, Mediator and Integrator bind to enhancers as early events, whereas YY1 recruitment and eRNA synthesis occur later, corresponding to transcription activation. Remarkably, the interplay between sense and antisense enhancer RNA is central to both active enhancer hub formation and coordinate Igλ transcription: Antisense Eλ3-1 eRNA represses Igλ activation whereas temporal analyses demonstrate that accumulating levels of sense eRNA boost YY1 recruitment to stabilise enhancer hub/promoter interactions and lead to coordinate transcription activation. These studies therefore demonstrate for the first time a critical role for threshold levels of sense versus antisense eRNA in locus activation.


Assuntos
Cadeias lambda de Imunoglobulina , Transcrição Gênica , Animais , Camundongos , Elementos Facilitadores Genéticos , Cadeias lambda de Imunoglobulina/genética , RNA Antissenso/genética , Fatores de Transcrição/genética
3.
EMBO J ; 39(22): e105220, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-32930455

RESUMO

When dormant naïve T cells first become activated by antigen-presenting cells, they express the autocrine growth factor IL-2 which transforms them into rapidly dividing effector T cells. During this process, hundreds of genes undergo epigenetic reprogramming for efficient activation, and also for potential reactivation after they return to quiescence as memory T cells. However, the relative contributions of IL-2 and T cell receptor signaling to this process are unknown. Here, we show that IL-2 signaling is required to maintain open chromatin at hundreds of gene regulatory elements, many of which control subsequent stimulus-dependent alternative pathways of T cell differentiation. We demonstrate that IL-2 activates binding of AP-1 and STAT5 at sites that can subsequently bind lineage-determining transcription factors, depending upon what other external factors exist in the local T cell environment. Once established, priming can also be maintained by the stroma-derived homeostatic cytokine IL-7, and priming diminishes if Il7r is subsequently deleted in vivo. Hence, IL-2 is not just a growth factor; it lays the foundation for T cell differentiation and immunological memory.


Assuntos
Diferenciação Celular/fisiologia , Fator VII/metabolismo , Interleucina-2/metabolismo , Interleucina-7/metabolismo , Animais , Células Apresentadoras de Antígenos/imunologia , Linfócitos T CD4-Positivos/imunologia , Cromatina/metabolismo , Citocinas/metabolismo , Epigenômica , Fator VII/genética , Regulação da Expressão Gênica , Memória Imunológica , Interleucina-2/genética , Interleucina-7/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais , Linfócitos T/imunologia , Linfócitos T/metabolismo , Fatores de Transcrição
4.
EMBO J ; 35(5): 515-35, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26796577

RESUMO

Immunological memory is a defining feature of vertebrate physiology, allowing rapid responses to repeat infections. However, the molecular mechanisms required for its establishment and maintenance remain poorly understood. Here, we demonstrated that the first steps in the acquisition of T-cell memory occurred during the initial activation phase of naïve T cells by an antigenic stimulus. This event initiated extensive chromatin remodeling that reprogrammed immune response genes toward a stably maintained primed state, prior to terminal differentiation. Activation induced the transcription factors NFAT and AP-1 which created thousands of new DNase I-hypersensitive sites (DHSs), enabling ETS-1 and RUNX1 recruitment to previously inaccessible sites. Significantly, these DHSs remained stable long after activation ceased, were preserved following replication, and were maintained in memory-phenotype cells. We show that primed DHSs maintain regions of active chromatin in the vicinity of inducible genes and enhancers that regulate immune responses. We suggest that this priming mechanism may contribute to immunological memory in T cells by facilitating the induction of nearby inducible regulatory elements in previously activated T cells.


Assuntos
Cromatina/metabolismo , Memória Imunológica , Linfócitos T/metabolismo , Animais , Células Cultivadas , Quimiocina CCL1/genética , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Desoxirribonuclease I/metabolismo , Expressão Gênica , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Humanos , Interleucina-3/genética , Células Jurkat , Camundongos Transgênicos , Fatores de Transcrição NFATC/genética , Proteína Proto-Oncogênica c-ets-1/genética , RNA Mensageiro/metabolismo , Baço/imunologia , Linfócitos T/imunologia , Fator de Transcrição AP-1/genética
5.
J Immunol ; 199(8): 2652-2667, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28904128

RESUMO

TCR signaling pathways cooperate to activate the inducible transcription factors NF-κB, NFAT, and AP-1. In this study, using the calcium ionophore ionomycin and/or PMA on Jurkat T cells, we show that the gene expression program associated with activation of TCR signaling is closely related to specific chromatin landscapes. We find that calcium and kinase signaling cooperate to induce chromatin remodeling at ∼2100 chromatin regions, which demonstrate enriched binding motifs for inducible factors and correlate with target gene expression. We found that these regions typically function as inducible enhancers. Many of these elements contain composite NFAT/AP-1 sites, which typically support cooperative binding, thus further reinforcing the need for cooperation between calcium and kinase signaling in the activation of genes in T cells. In contrast, treatment with PMA or ionomycin alone induces chromatin remodeling at far fewer regions (∼600 and ∼350, respectively), which mostly represent a subset of those induced by costimulation. This suggests that the integration of TCR signaling largely occurs at the level of chromatin, which we propose plays a crucial role in regulating T cell activation.


Assuntos
Cálcio/metabolismo , Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/imunologia , Ionóforos de Cálcio/imunologia , Humanos , Células Jurkat , Ativação Linfocitária , NF-kappa B/metabolismo , Fatores de Transcrição NFATC/metabolismo , Fosfotransferases/metabolismo , Receptor Cross-Talk , Transdução de Sinais , Fator de Transcrição AP-1/metabolismo
6.
Bioessays ; 39(2)2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28026028

RESUMO

We have identified a simple epigenetic mechanism underlying the establishment and maintenance of immunological memory in T cells. By studying the transcriptional regulation of inducible genes we found that a single cycle of activation of inducible factors is sufficient to initiate stable binding of pre-existing transcription factors to thousands of newly activated distal regulatory elements within inducible genes. These events lead to the creation of islands of active chromatin encompassing nearby enhancers, thereby supporting the accelerated activation of inducible genes, without changing steady state levels of transcription in memory T cells. These studies also highlighted the need for more sophisticated definitions of gene regulatory elements. The chromatin priming elements defined here are distinct from classical enhancers because they function by maintaining chromatin accessibility rather than directly activating transcription. We propose that these priming elements are members of a wider class of genomic elements that support correct developmentally regulated gene expression.


Assuntos
Cromatina , Epigênese Genética , Memória Imunológica , Linfócitos T/metabolismo , Animais , Humanos , Linfócitos T/imunologia , Ativação Transcricional
7.
Biochem Biophys Res Commun ; 441(2): 482-7, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24383080

RESUMO

Enhancers are essential for long range chromatin opening and the activation of V(D)J recombination at the antigen receptor loci. The murine immunoglobulin lambda light chain locus is a duplicated locus and, using a bacterial artificial chromosome spanning the 3' half of the locus to generate transgenic mice, we have identified a critical enhancer element for lambda locus recombination. Four hypersensitive sites had been previously mapped downstream of the JCλ1 gene segment (HS1-4). Systematic deletion of these individual hypersensitive sites showed that HS1, which forms the major part of the transcription enhancer, Eλ3­1, is essential for Igλ recombination and that it also helps to restrict Igλ stage-specific recombination.


Assuntos
Elementos Facilitadores Genéticos , Cadeias lambda de Imunoglobulina/genética , Recombinação V(D)J , Animais , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos/genética , Loci Gênicos , Camundongos , Camundongos Transgênicos , Deleção de Sequência
8.
Front Immunol ; 12: 642807, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34108962

RESUMO

T cell immunological memory is established within days of an infection, but little is known about the in vivo changes in gene regulatory networks accounting for their ability to respond more efficiently to secondary infections. To decipher the timing and nature of immunological memory we performed genome-wide analyses of epigenetic and transcriptional changes in a mouse model generating antigen-specific T cells. Epigenetic reprogramming for Th differentiation and memory T cell formation was already established by the peak of the T cell response after 7 days. The Th memory T cell program was associated with a gain of open chromatin regions, enriched for RUNX, ETS and T-bet motifs, which remained stable for 56 days. The epigenetic programs for both effector memory, associated with T-bet, and central memory, associated with TCF-1, were established in parallel. Memory T cell-specific regulatory elements were associated with greatly enhanced inducible Th1-biased responses during secondary exposures to antigen. Furthermore, memory T cells responded in vivo to re-exposure to antigen by rapidly reprograming the entire ETS factor gene regulatory network, by suppressing Ets1 and activating Etv6 expression. These data show that gene regulatory networks are epigenetically reprogrammed towards memory during infection, and undergo substantial changes upon re-stimulation.


Assuntos
Antígenos/imunologia , Linfócitos T CD4-Positivos/imunologia , Epigênese Genética , Redes Reguladoras de Genes , Memória Imunológica , Animais , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Tempo
9.
Cell Rep ; 31(10): 107748, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32521273

RESUMO

Immunological homeostasis in T cells is maintained by a tightly regulated signaling and transcriptional network. Full engagement of effector T cells occurs only when signaling exceeds a critical threshold that enables induction of immune response genes carrying an epigenetic memory of prior activation. Here we investigate the underlying mechanisms causing the suppression of normal immune responses when T cells are rendered anergic by tolerance induction. By performing an integrated analysis of signaling, epigenetic modifications, and gene expression, we demonstrate that immunological tolerance is established when both signaling to and chromatin priming of immune response genes are weakened. In parallel, chromatin priming of immune-repressive genes becomes boosted, rendering them sensitive to low levels of signaling below the threshold needed to activate immune response genes. Our study reveals how repeated exposure to antigens causes an altered epigenetic state leading to T cell anergy and tolerance, representing a basis for treating auto-immune diseases.


Assuntos
Cromatina/genética , Epigenômica/métodos , Tolerância Imunológica/genética , Linfócitos T/imunologia , Animais , Homeostase , Camundongos , Transdução de Sinais
10.
Nat Commun ; 11(1): 3421, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32647184

RESUMO

The OX40-OX40L pathway provides crucial co-stimulatory signals for CD4 T cell responses, however the precise cellular interactions critical for OX40L provision in vivo and when these occur, remains unclear. Here, we demonstrate that provision of OX40L by dendritic cells (DCs), but not T cells, B cells nor group 3 innate lymphoid cells (ILC3s), is critical specifically for the effector Th1 response to an acute systemic infection with Listeria monocytogenes (Lm). OX40L expression by DCs is regulated by cross-talk with NK cells, with IFNγ signalling to the DC to enhance OX40L in a mechanism conserved in both mouse and human DCs. Strikingly, DC expression of OX40L is redundant in a chronic intestinal Th1 response and expression by ILC3s is necessary. Collectively these data reveal tissue specific compartmentalisation of the cellular provision of OX40L and define a mechanism controlling DC expression of OX40L in vivo.


Assuntos
Microambiente Celular , Ligante OX40/metabolismo , Células Th1/imunologia , Animais , Comunicação Celular , Sinais (Psicologia) , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Humanos , Interferon gama/biossíntese , Interleucina-12/farmacologia , Intestinos/citologia , Antígeno Ki-1/metabolismo , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/metabolismo , Listeria monocytogenes/fisiologia , Camundongos Endogâmicos C57BL , Receptores CXCR5/metabolismo , Receptores OX40/metabolismo , Baço/metabolismo , Regulação para Cima/efeitos dos fármacos
11.
Front Immunol ; 8: 204, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28316598

RESUMO

Experienced T cells exhibit immunological memory via a rapid recall response, responding to restimulation much faster than naïve T cells. The formation of immunological memory starts during an initial slow response, when naïve T cells become transformed to proliferating T blast cells, and inducible immune response genes are reprogrammed as active chromatin domains. We demonstrated that these active domains are supported by thousands of priming elements which cooperate with inducible transcriptional enhancers to enable efficient responses to stimuli. At the conclusion of this response, a small proportion of these cells return to the quiescent state as long-term memory T cells. We proposed that priming elements can be established in a hit-and-run process dependent on the inducible factor AP-1, but then maintained by the constitutive factors RUNX1 and ETS-1. This priming mechanism may also function to render genes receptive to additional differentiation-inducing factors such as GATA3 and TBX21 that are encountered under polarizing conditions. The proliferation of recently activated T cells and the maintenance of immunological memory in quiescent memory T cells are also dependent on various cytokine signaling pathways upstream of AP-1. We suggest that immunological memory is established by T cell receptor signaling, but maintained by cytokine signaling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA