Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Phys Rev Lett ; 118(2): 027401, 2017 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-28128616

RESUMO

Selective optical excitation of a substrate lattice can drive phase changes across heterointerfaces. This phenomenon is a nonequilibrium analogue of static strain control in heterostructures and may lead to new applications in optically controlled phase change devices. Here, we make use of time-resolved nonresonant and resonant x-ray diffraction to clarify the underlying physics and to separate different microscopic degrees of freedom in space and time. We measure the dynamics of the lattice and that of the charge disproportionation in NdNiO_{3}, when an insulator-metal transition is driven by coherent lattice distortions in the LaAlO_{3} substrate. We find that charge redistribution propagates at supersonic speeds from the interface into the NdNiO_{3} film, followed by a sonic lattice wave. When combined with measurements of magnetic disordering and of the metal-insulator transition, these results establish a hierarchy of events for ultrafast control at complex-oxide heterointerfaces.

2.
Acta Crystallogr A Found Adv ; 74(Pt 6): 640-646, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30378575

RESUMO

An accurate description of the diffraction line profile from nanocrystalline powders can be obtained by a spherical harmonics expansion of the profile function. The procedure outlined in this work is found to be computationally efficient and applicable to the line profile for any crystallite shape and size. Practical examples of the diffraction pattern peak profiles resulting from cubic crystallites between 1 and 100 nm in size are shown.

3.
Nat Chem ; 10(3): 355-362, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29461525

RESUMO

The entatic state denotes a distorted coordination geometry of a complex from its typical arrangement that generates an improvement to its function. The entatic-state principle has been observed to apply to copper electron-transfer proteins and it results in a lowering of the reorganization energy of the electron-transfer process. It is thus crucial for a multitude of biochemical processes, but its importance to photoactive complexes is unexplored. Here we study a copper complex-with a specifically designed constraining ligand geometry-that exhibits metal-to-ligand charge-transfer state lifetimes that are very short. The guanidine-quinoline ligand used here acts on the bis(chelated) copper(I) centre, allowing only small structural changes after photoexcitation that result in very fast structural dynamics. The data were collected using a multimethod approach that featured time-resolved ultraviolet-visible, infrared and X-ray absorption and optical emission spectroscopy. Through supporting density functional calculations, we deliver a detailed picture of the structural dynamics in the picosecond-to-nanosecond time range.


Assuntos
Complexos de Coordenação/química , Cobre/química , Processos Fotoquímicos , Teoria da Densidade Funcional , Transporte de Elétrons , Estrutura Molecular
4.
Rev Sci Instrum ; 86(12): 125104, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26724070

RESUMO

Serial femtosecond crystallography (SFX) using X-ray Free-Electron Lasers (XFELs) allows for room temperature protein structure determination without evidence of conventional radiation damage. In this method, a liquid suspension of protein microcrystals can be delivered to the X-ray beam in vacuum as a micro-jet, which replenishes the crystals at a rate that exceeds the current XFEL pulse repetition rate. Gas dynamic virtual nozzles produce the required micrometer-sized streams by the focusing action of a coaxial sheath gas and have been shown to be effective for SFX experiments. Here, we describe the design and characterization of such nozzles assembled from ceramic micro-injection molded outer gas-focusing capillaries. Trends of the emitted jet diameter and jet length as a function of supplied liquid and gas flow rates are measured by a fast imaging system. The observed trends are explained by derived relationships considering choked gas flow and liquid flow conservation. Finally, the performance of these nozzles in a SFX experiment is presented, including an analysis of the observed background.

5.
Struct Dyn ; 2(4): 041703, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26798803

RESUMO

Current hard X-ray free-electron laser (XFEL) sources can deliver doses to biological macromolecules well exceeding 1 GGy, in timescales of a few tens of femtoseconds. During the pulse, photoionization can reach the point of saturation in which certain atomic species in the sample lose most of their electrons. This electronic radiation damage causes the atomic scattering factors to change, affecting, in particular, the heavy atoms, due to their higher photoabsorption cross sections. Here, it is shown that experimental serial femtosecond crystallography data collected with an extremely bright XFEL source exhibit a reduction of the effective scattering power of the sulfur atoms in a native protein. Quantitative methods are developed to retrieve information on the effective ionization of the damaged atomic species from experimental data, and the implications of utilizing new phasing methods which can take advantage of this localized radiation damage are discussed.

6.
Struct Dyn ; 2(4): 041717, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26798816

RESUMO

A major challenge in high-resolution x-ray free-electron laser-based coherent diffractive imaging is the development of aerosol injectors that can efficiently deliver particles to the peak intensity of the focused X-ray beam. Here, we consider the use of a simple convergent-orifice nozzle for producing tightly focused beams of particles. Through optical imaging we show that 0.5 µm particles can be focused to a full-width at half maximum diameter of 4.2 µm, and we demonstrate the use of such a nozzle for injecting viruses into a micro-focused soft-X-ray FEL beam.

7.
Acta Crystallogr A ; 68(Pt 3): 382-92, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22514070

RESUMO

The effects of thermal vibrations on X-ray powder diffraction patterns are discussed. Special considerations for extremely small crystallites are described, including the occurrence of surface and edge vibrational modes, and a restriction on the maximum phonon wavelength. In doing so, a complete temperature diffuse scattering (TDS) model is presented, which includes the influence of these features on: the Debye-Waller parameter; first-order TDS; and higher-order TDS terms. The importance of using an accurate TDS representation is studied as a function of temperature and crystallite size. It is found that a misrepresentation of the TDS for small crystallites can lead to an error in the determined Debye-Waller parameter on the order of 20-40% and a slight overestimation of the peak broadening. While the presented theory is primarily developed considering X-ray scattering, the same expressions are expected to describe the TDS in faster-than-sound neutron powder diffraction measurements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA