Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Langmuir ; 39(30): 10395-10405, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37462925

RESUMO

Portlandite (calcium hydroxide: CH: Ca(OH)2) suspensions aggregate spontaneously and form percolated fractal aggregate networks when dispersed in water. Consequently, the viscosity and yield stress of portlandite suspensions diverge at low particle loadings, adversely affecting their processability. Even though polycarboxylate ether (PCE)-based comb polyelectrolytes are routinely used to alter the particle dispersion state, water demand, and rheology of similar suspensions (e.g., ordinary portland cement suspensions) that feature a high pH and high ionic strength, their use to control portlandite suspension rheology has not been elucidated. This study combines adsorption isotherms and rheological measurements to elucidate the role of PCE composition (i.e., charge density, side chain length, and grafting density) in controlling the extent of PCE adsorption, particle flocculation, suspension yield stress, and thermal response of portlandite suspensions. We show that longer side-chain PCEs are more effective in affecting suspension viscosity and yield stress, in spite of their lower adsorption saturation limit and fractional adsorption. The superior steric hindrance induced by the longer side chain PCEs results in better efficacy in mitigating particle aggregation even at low dosages. However, when dosed at optimal dosages (i.e., a dosage that induces a dynamically equilibrated dispersion state of particle aggregates), different PCE-dosed portlandite suspensions exhibit identical fractal structuring and rheological behavior regardless of the side chain length. Furthermore, it is shown that the unusual evolution of the rheological response of portlandite suspensions with temperature can be tailored by adjusting the PCE dosage. The ability of PCEs to modulate the rheology of aggregating charged particle suspensions can be generally extended to any colloidal suspension with a strong screening of repulsive electrostatic interactions.

2.
Langmuir ; 36(36): 10811-10821, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32799535

RESUMO

Temperature is well known to affect the aggregation behavior of colloidal suspensions. This paper elucidates the temperature dependence of the rheology of portlandite (calcium hydroxide: Ca(OH)2) suspensions that feature a high ionic strength and a pH close to the particle's isoelectric point. In contrast to the viscosity of the suspending medium (saturated solution of Ca(OH)2 in water), the viscosity of Ca(OH)2 suspensions is found to increase with elevating temperature. This behavior is shown to arise from the temperature-induced aggregation of polydisperse Ca(OH)2 particulates because of the diminution of electrostatic repulsive forces with increasing temperature. The temperature dependence of the suspension viscosity is further shown to diminish with increasing particle volume fraction as a result of volumetric crowding and the formation of denser fractal structures in the suspension. Significantly, the temperature-dependent rheological response of suspensions is shown to be strongly affected by the suspending medium's properties, including ionic strength and ion valence, which affect aggregation kinetics. These outcomes provide new insights into aggregation processes that affect the temperature-dependent rheology of portlandite-based and similar suspensions that feature strong charge screening behavior.

3.
ACS Omega ; 4(4): 6647-6659, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31459790

RESUMO

Highly concentrated water-in-oil emulsions incorporating multiwalled carbon nanotubes (MWCNTs) are prepared. Homogeneous and selective dispersions of MWCNTs throughout the oil phase of the emulsions are investigated. The practical insolubility of carbon nanotubes (CNTs) in aqueous and organic media necessitates the disentanglement of CNT "agglomerates" through the utilization of functionalized CNTs. The design and synthesis of two tetra-alkylated pyrene derivatives, namely, 1,3,6,8-tetra(oct-1-yn-1-yl)pyrene (TOPy) and 1,3,6,8-tetra(dodec-1-yn-1-yl)pyrene (TDPy), for the noncovalent organic modification of MWCNTs are reported. The modifier molecules are designed in such a manner that they facilitate an improved dispersion of individualized MWCNTs in the continuous-oil phase of the highly concentrated emulsion (HCE). Transmission electron microscopic analyses suggest that the alkylated pyrene molecules are adsorbed on the MWCNT surface, and their adsorption eventually results in the debundling of MWCNT agglomerates. Fourier transform infrared, Raman, and fluorescence spectroscopic analyses confirm the π-π interaction between the alkylated pyrene molecules and MWCNTs. The noncovalent modification significantly improves the effective debundling and selective dispersion of MWCNTs in HCEs.

4.
ACS Omega ; 3(10): 13584-13597, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458064

RESUMO

Multiwalled carbon nanotubes (MWCNTs) were incorporated into highly concentrated water-in-oil emulsions with the ultimate aim of achieving a uniform and effective dispersion of MWCNTs within the emulsion matrix. The emulsion was formulated in such a way, wherein the internal phase consists of higher than 90 wt %. By keeping the same aqueous-to-oil phase ratio, the amount of MWCNTs in the oil phase was systematically adjusted to investigate their effects on the microstructure development and rheological behavior of the emulsion. The addition of MWCNTs led to a reduced droplet size and also resulted in a narrower distribution of the droplet size. The rheological behavior of nanotube-incorporated emulsions was characterized with varying MWCNT concentrations and also as a function of the emulsification time. The rheological characteristics of the nanotube-incorporated emulsions were identical to those of the neat emulsion and were primarily governed by the variation in the droplet size and droplet-size distribution. However, the yield strain and cross-over strain were independent of the mean droplet size and polydispersity of the emulsion. Emulsions that have smaller droplets exhibited higher storage modulus (G'), yield stress (τY), and apparent viscosity (η). For all refining times investigated, nanotube-incorporated emulsions have higher G', τY, and η values when compared to the neat emulsion, and these values further increased with the MWCNT concentration. This was primarily due to the decrease in the droplet size with MWCNT addition. Furthermore, our findings suggest that the incorporated MWCNTs did not induce any significant change in the rheological behavior of emulsions with identical droplet sizes, and it remained essentially unchanged with the concentration of MWCNTs. However, the nanotube-incorporated emulsions possessed solidlike behavior up to a higher applied stress when compared to a neat emulsion of identical droplet size.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA