RESUMO
In neuroblastoma (NB), genetic alterations in chromatin remodeling (CRGs) and epigenetic modifier genes (EMGs) have been described. We sought to determine their frequency and clinical impact. Whole exome (WES)/whole genome sequencing (WGS) data and targeted sequencing (TSCA®) of exonic regions of 33 CRGs/EMGs were analyzed in tumor samples from 283 NB patients, with constitutional material available for 55 patients. The frequency of CRG/EMG variations in NB cases was then compared to the Genome Aggregation Database (gnomAD). The sequencing revealed SNVs/small InDels or focal CNAs of CRGs/EMGs in 20% (56/283) of all cases, occurring at a somatic level in 4 (7.2%), at a germline level in 12 (22%) cases, whereas for the remaining cases, only tumor material could be analyzed. The most frequently altered genes were ATRX (5%), SMARCA4 (2.5%), MLL3 (2.5%) and ARID1B (2.5%). Double events (SNVs/small InDels/CNAs associated with LOH) were observed in SMARCA4 (n = 3), ATRX (n = 1) and PBRM1 (n = 1). Among the 60 variations, 24 (8.4%) targeted domains of functional importance for chromatin remodeling or highly conserved domains but of unknown function. Variations in SMARCA4 and ATRX occurred more frequently in the NB as compared to the gnomAD control cohort (OR = 4.49, 95%CI: 1.63-9.97, p = 0.038; OR 3.44, 95%CI: 1.46-6.91, p = 0.043, respectively). Cases with CRG/EMG variations showed a poorer overall survival compared to cases without variations. Genetic variations of CRGs/EMGs with likely functional impact were observed in 8.4% (24/283) of NB. Our case-control approach suggests a role of SMARCA4 as a player of NB oncogenesis.
Assuntos
Carcinogênese/genética , Montagem e Desmontagem da Cromatina/genética , DNA Helicases/genética , Neuroblastoma/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Adolescente , Estudos de Casos e Controles , Criança , Pré-Escolar , Variações do Número de Cópias de DNA , Éxons/genética , Feminino , Mutação em Linhagem Germinativa , Humanos , Mutação INDEL , Lactente , Recém-Nascido , Estimativa de Kaplan-Meier , Masculino , Neuroblastoma/mortalidade , Neuroblastoma/patologia , Polimorfismo de Nucleotídeo Único , Intervalo Livre de Progressão , Sequenciamento do Exoma , Proteína Nuclear Ligada ao X/genéticaRESUMO
PURPOSE: Genomic studies have demonstrated the necessity of ethnicity-specific population data to ascertain variant pathogenicity for disease diagnosis and treatment. This study examined the carrier prevalence of treatable inherited disorders (TIDs), where early diagnosis of at-risk offspring can significantly improve clinical outcomes. METHODS: Existing exome/ genome sequencing data of 831 Singaporeans were aggregated and examined for disease causing variants in 104 genes associated with 80 TIDs. RESULTS: Among the 831 Singaporean participants, genomic variant filtering and analysis identified 1 in 18 individuals (6%) to be carriers amongst one of 13 TIDs. Citrin deficiency and Wilson disease had the highest carrier frequency of 1 in 41, and 1 in 103 individuals, respectively. The pathogenic variants associated with citrin deficiency were 24 times more prevalent in our local cohorts when compared to Western cohorts. CONCLUSION: This study demonstrates the value of a population specific genomic database to determine true disease prevalence and has enabled the discovery of carrier frequencies of treatable genetic conditions specific to South East Asian populations, which are currently underestimated in existing data sources. This study framework can be adapted to other population groups and expanded to multiple genetic conditions to inform health policies directing precision medicine.
Assuntos
Exoma/genética , Triagem de Portadores Genéticos , Doenças Genéticas Inatas/genética , Predisposição Genética para Doença , Ásia , Etnicidade , Frequência do Gene , Doenças Genéticas Inatas/classificação , Doenças Genéticas Inatas/epidemiologia , Doenças Genéticas Inatas/patologia , Variação Genética , Genética Populacional , Humanos , Masculino , Metagenômica , Mutação/genética , Medicina de PrecisãoRESUMO
Medullary breast carcinoma (MBC) is a rare subtype of triple-negative breast cancer with specific genomic features within the spectrum of basal-like carcinoma (BLC). In this study of 19 MBCs and 36 non-MBC BLCs, we refined the transcriptomic and genomic knowledge about this entity. Unsupervised and supervised analysis of transcriptomic profiles confirmed that MBC clearly differs from non-MBC BLC, with 92 genes overexpressed and 154 genes underexpressed in MBC compared with non-MBC BLC. Immunity-related pathways are the most differentially represented pathways in MBC compared with non-MBC BLC. The proapoptotic gene BCLG (official name BCL2L14) is by far the most intensely overexpressed gene in MBC. A quantitative RT-PCR validation study conducted in 526 breast tumors corresponding to all molecular subtypes documented the specificity of BCLG overexpression in MBC, which was confirmed at the protein level by immunohistochemistry. We also found that most MBCs belong to the immunomodulatory triple-negative breast cancer subtype. Using pan-genomic analysis, it was found that MBC harbors more losses of heterozygosity than non-MBC BLC. These observations corroborate the notion that MBC remains a distinct entity that could benefit from specific treatment strategies (such as deescalation or targeted therapy) adapted to this rare tumor type.
Assuntos
Carcinoma Medular/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Neoplasias de Mama Triplo Negativas/genética , Proteína BRCA2/genética , DNA de Neoplasias/metabolismo , Feminino , Perfilação da Expressão Gênica , Genes Neoplásicos/genética , Humanos , Perda de Heterozigosidade/genética , RNA Neoplásico/metabolismo , Estudos Retrospectivos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ubiquitina-Proteína Ligases/genéticaRESUMO
At the time of publication the author Jyn Ling Kuan did not have a master's degree; this has now been amended to BSc. This has now been corrected in the PDF and HTML versions of the article.
RESUMO
INTRODUCTION: Pure invasive micropapillary carcinoma (IMPC) is a special type of breast carcinoma characterised by clusters of cells presenting polarity abnormalities. The biological alterations underlying this pattern remain unknown. METHODS: Pangenomic analysis (n=39), TP53 (n=43) and PIK3CA (n=41) sequencing in a series of IMPCs were performed. A subset of cases was also analysed with whole-exome sequencing (n=4) and RNA sequencing (n=6). Copy number variation profiles were compared with those of oestrogen receptors and grade-matched invasive ductal carcinomas (IDCs) of no special type. RESULTS: Unsupervised analysis of genomic data distinguished two IMPC subsets: one (Sawtooth/8/16) exhibited a significant increase in 16p gains (71%), and the other (Firestorm/Amplifier) was characterised by a high frequency of 8q (35%), 17q (20% to 46%) and 20q (23% to 30%) amplifications and 17p loss (74%). TP53 mutations (10%) were more frequently identified in the amplifier subset, and PIK3CA mutations (4%) were detected in both subsets. Compared to IDC, IMPC exhibited specific loss of the 6q16-q22 region (45%), which is associated with downregulation of FOXO3 and SEC63 gene expression. SEC63 and FOXO3 missense mutations were identified in one case each (2%). Whole-exome sequencing combined with RNA sequencing of IMPC allowed us to identify somatic mutations in genes involved in polarity, DNAH9 and FMN2 (8% and 2%, respectively) or ciliogenesis, BBS12 and BBS9 (2% each) or genes coding for endoplasmic reticulum protein, HSP90B1 and SPTLC3 (2% each) and cytoskeleton, UBR4 and PTPN21 (2% each), regardless of the genomic subset. The intracellular biological function of the mutated genes identified by gene ontology analysis suggests a driving role in the clinicopathological characteristics of IMPC. CONCLUSION: In our comprehensive molecular analysis of IMPC, we identified numerous genomic alterations without any recurrent fusion genes. Recurrent somatic mutations of genes participating in cellular polarity and shape suggest that they, together with other biological alterations (such as epigenetic modifications and stromal alterations), could contribute to the morphological pattern of IMPC. Though none of the individual abnormalities demonstrated specificity for IMPC, whether their combination in IMPC may have a cumulative effect that drives the abnormal polarity of IMPC needs to be examined further with in vitro experiments.
Assuntos
Neoplasias da Mama/genética , Carcinoma Ductal de Mama/genética , Polaridade Celular/genética , Invasividade Neoplásica/genética , Dineínas do Axonema/genética , Sequência de Bases , Mama/patologia , Neoplasias da Mama/patologia , Proteínas de Ligação a Calmodulina/genética , Carcinoma Ductal de Mama/patologia , Chaperoninas , Classe I de Fosfatidilinositol 3-Quinases , Proteínas do Citoesqueleto/genética , Variações do Número de Cópias de DNA , Exoma/genética , Feminino , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/biossíntese , Fatores de Transcrição Forkhead/genética , Forminas , Amplificação de Genes/genética , Chaperoninas do Grupo II/genética , Humanos , Glicoproteínas de Membrana/genética , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Proteínas dos Microfilamentos/biossíntese , Chaperonas Moleculares , Mutação de Sentido Incorreto , Proteínas de Neoplasias/genética , Proteínas Nucleares/biossíntese , Fosfatidilinositol 3-Quinases/genética , Proteínas Tirosina Fosfatases não Receptoras/genética , Proteínas de Ligação a RNA , Receptor ErbB-2/biossíntese , Receptores de Estrogênio/biossíntese , Estudos Retrospectivos , Análise de Sequência de DNA , Análise de Sequência de RNA , Deleção de Sequência/genética , Serina C-Palmitoiltransferase/genética , Proteína Supressora de Tumor p53/genética , Ubiquitina-Proteína LigasesRESUMO
PURPOSE: The study of cell-free DNA (cfDNA) enables sequential analysis of tumor cell-specific genetic alterations in patients with neuroblastoma. EXPERIMENTAL DESIGN: Eighteen patients with relapsing neuroblastoma having received lorlatinib, a third-generation ALK inhibitor, were identified (SACHA national registry and/or in the institution). cfDNA was analyzed at relapse for nine patients and sequentially for five patients (blood/bone marrow plasma) by performing whole-genome sequencing library construction followed by ALK-targeted ddPCR of the hotspot mutations [F1174L, R1275Q, and I1170N; variant allele fraction (VAF) detection limit 0.1%] and whole-exome sequencing (WES) to evaluate disease burden and clonal evolution, following comparison with tumor/germline WES. RESULTS: Overall response rate to lorlatinib was 33% (CI, 13%-59%), with response observed in 6/10 cases without versus 0/8 cases with MYCN amplification (MNA). ALK VAFs correlated with the overall clinical disease status, with a VAF < 0.1% in clinical remission, versus higher VAFs (>30%) at progression. Importantly, sequential ALK ddPCR detected relapse earlier than clinical imaging. cfDNA WES revealed new SNVs, not seen in the primary tumor, in all instances of disease progression after lorlatinib treatment, indicating clonal evolution, including alterations in genes linked to tumor aggressivity (TP53) or novel targets (EGFR). Gene pathway analysis revealed an enrichment for genes targeting cell differentiation in emerging clones, and cell adhesion in persistent clones. Evidence of clonal hematopoiesis could be observed in follow-up samples. CONCLUSIONS: We demonstrate the clinical utility of combining ALK cfDNA ddPCR for disease monitoring and cfDNA WES for the study of clonal evolution and resistance mechanisms in patients with neuroblastoma receiving ALK-targeted therapy.
Assuntos
Quinase do Linfoma Anaplásico , Ácidos Nucleicos Livres , Evolução Clonal , Mutação , Neuroblastoma , Humanos , Neuroblastoma/genética , Neuroblastoma/tratamento farmacológico , Neuroblastoma/patologia , Quinase do Linfoma Anaplásico/genética , Quinase do Linfoma Anaplásico/antagonistas & inibidores , Evolução Clonal/genética , Masculino , Feminino , Criança , Pré-Escolar , Ácidos Nucleicos Livres/genética , Aminopiridinas/uso terapêutico , Pirazóis/uso terapêutico , Lactamas , Lactente , Adolescente , Sequenciamento do Exoma , Inibidores de Proteínas Quinases/uso terapêutico , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/patologia , Terapia de Alvo Molecular/métodos , Biomarcadores Tumorais/genética , Sequenciamento Completo do Genoma/métodosRESUMO
PURPOSE: ALK-activating mutations are identified in approximately 10% of newly diagnosed neuroblastomas and ALK amplifications in a further 1%-2% of cases. Lorlatinib, a third-generation anaplastic lymphoma kinase (ALK) inhibitor, will soon be given alongside induction chemotherapy for children with ALK-aberrant neuroblastoma. However, resistance to single-agent treatment has been reported and therapies that improve the response duration are urgently required. We studied the preclinical combination of lorlatinib with chemotherapy, or with the MDM2 inhibitor, idasanutlin, as recent data have suggested that ALK inhibitor resistance can be overcome through activation of the p53-MDM2 pathway. EXPERIMENTAL DESIGN: We compared different ALK inhibitors in preclinical models prior to evaluating lorlatinib in combination with chemotherapy or idasanutlin. We developed a triple chemotherapy (CAV: cyclophosphamide, doxorubicin, and vincristine) in vivo dosing schedule and applied this to both neuroblastoma genetically engineered mouse models (GEMM) and patient-derived xenografts (PDX). RESULTS: Lorlatinib in combination with chemotherapy was synergistic in immunocompetent neuroblastoma GEMM. Significant growth inhibition in response to lorlatinib was only observed in the ALK-amplified PDX model with high ALK expression. In this PDX, lorlatinib combined with idasanutlin resulted in complete tumor regression and significantly delayed tumor regrowth. CONCLUSIONS: In our preclinical neuroblastoma models, high ALK expression was associated with lorlatinib response alone or in combination with either chemotherapy or idasanutlin. The synergy between MDM2 and ALK inhibition warrants further evaluation of this combination as a potential clinical approach for children with neuroblastoma.
Assuntos
Neoplasias Pulmonares , Neuroblastoma , Camundongos , Animais , Humanos , Quinase do Linfoma Anaplásico/genética , Aminopiridinas/uso terapêutico , Lactamas Macrocíclicas/farmacologia , Lactamas Macrocíclicas/uso terapêutico , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológicoRESUMO
Noradrenergic and mesenchymal identities have been characterized in neuroblastoma cell lines according to their epigenetic landscapes and core regulatory circuitries. However, their relationship and relative contribution in patient tumors remain poorly defined. We now document spontaneous and reversible plasticity between the two identities, associated with epigenetic reprogramming, in several neuroblastoma models. Interestingly, xenografts with cells from each identity eventually harbor a noradrenergic phenotype suggesting that the microenvironment provides a powerful pressure towards this phenotype. Accordingly, such a noradrenergic cell identity is systematically observed in single-cell RNA-seq of 18 tumor biopsies and 15 PDX models. Yet, a subpopulation of these noradrenergic tumor cells presents with mesenchymal features that are shared with plasticity models, indicating that the plasticity described in these models has relevance in neuroblastoma patients. This work therefore emphasizes that intrinsic plasticity properties of neuroblastoma cells are dependent upon external cues of the environment to drive cell identity.
Assuntos
Plasticidade Celular , Neuroblastoma , Humanos , Neuroblastoma/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral/genéticaRESUMO
Ornithine decarboxylase (ODC1), a critical regulatory enzyme in polyamine biosynthesis, is a direct transcriptional target of MYCN, amplification of which is a powerful marker of aggressive neuroblastoma. A single nucleotide polymorphism (SNP), G316A, within the first intron of ODC1, results in genotypes wildtype GG, and variants AG/AA. CRISPR-cas9 technology was used to investigate the effects of AG clones from wildtype MYCN-amplified SK-N-BE(2)-C cells and the effect of the SNP on MYCN binding, and promoter activity was investigated using EMSA and luciferase assays. AG clones exhibited decreased ODC1 expression, growth rates, and histone acetylation and increased sensitivity to ODC1 inhibition. MYCN was a stronger transcriptional regulator of the ODC1 promoter containing the G allele, and preferentially bound the G allele over the A. Two neuroblastoma cohorts were used to investigate the clinical impact of the SNP. In the study cohort, the minor AA genotype was associated with improved survival, while poor prognosis was associated with the GG genotype and AG/GG genotypes in MYCN-amplified and non-amplified patients, respectively. These effects were lost in the GWAS cohort. We have demonstrated that the ODC1 G316A polymorphism has functional significance in neuroblastoma and is subject to allele-specific regulation by the MYCN oncoprotein.
RESUMO
PURPOSE: In neuroblastoma (NB), the ALK receptor tyrosine kinase can be constitutively activated through activating point mutations or genomic amplification. We studied ALK genetic alterations in high-risk (HR) patients on the HR-NBL1/SIOPEN trial to determine their frequency, correlation with clinical parameters, and prognostic impact. MATERIALS AND METHODS: Diagnostic tumor samples were available from 1,092 HR-NBL1/SIOPEN patients to determine ALK amplification status (n = 330), ALK mutational profile (n = 191), or both (n = 571). RESULTS: Genomic ALK amplification (ALKa) was detected in 4.5% of cases (41 out of 901), all except one with MYCN amplification (MNA). ALKa was associated with a significantly poorer overall survival (OS) (5-year OS: ALKa [n = 41] 28% [95% CI, 15 to 42]; no-ALKa [n = 860] 51% [95% CI, 47 to 54], [P < .001]), particularly in cases with metastatic disease. ALK mutations (ALKm) were detected at a clonal level (> 20% mutated allele fraction) in 10% of cases (76 out of 762) and at a subclonal level (mutated allele fraction 0.1%-20%) in 3.9% of patients (30 out of 762), with a strong correlation between the presence of ALKm and MNA (P < .001). Among 571 cases with known ALKa and ALKm status, a statistically significant difference in OS was observed between cases with ALKa or clonal ALKm versus subclonal ALKm or no ALK alterations (5-year OS: ALKa [n = 19], 26% [95% CI, 10 to 47], clonal ALKm [n = 65] 33% [95% CI, 21 to 44], subclonal ALKm (n = 22) 48% [95% CI, 26 to 67], and no alteration [n = 465], 51% [95% CI, 46 to 55], respectively; P = .001). Importantly, in a multivariate model, involvement of more than one metastatic compartment (hazard ratio [HR], 2.87; P < .001), ALKa (HR, 2.38; P = .004), and clonal ALKm (HR, 1.77; P = .001) were independent predictors of poor outcome. CONCLUSION: Genetic alterations of ALK (clonal mutations and amplifications) in HR-NB are independent predictors of poorer survival. These data provide a rationale for integration of ALK inhibitors in upfront treatment of HR-NB with ALK alterations.
Assuntos
Quinase do Linfoma Anaplásico/genética , Amplificação de Genes , Taxa de Mutação , Neuroblastoma/genética , Pré-Escolar , Ensaios Clínicos Fase III como Assunto , Europa (Continente) , Feminino , Seguimentos , Humanos , Lactente , Masculino , Proteína Proto-Oncogênica N-Myc/genética , Prognóstico , Ensaios Clínicos Controlados Aleatórios como Assunto , Fatores de Risco , Taxa de SobrevidaRESUMO
Sudden cardiac death (SCD) is often associated with structural abnormalities of the heart during autopsy. This study sought to compare the diagnostic yield of postmortem genetic testing in (1) cases with structural findings of uncertain significance at autopsy to (2) cases with autopsy findings diagnostic of cardiomyopathy. We evaluated 57 SCD cases with structural findings at cardiac autopsy. Next-generation sequencing using a panel of 77 primary electrical disorder and cardiomyopathy genes was performed. Pathogenic and likely pathogenic variants were classified using American College of Medical Genetics (ACMG) consensus guidelines. In 29 cases (51%) autopsy findings of uncertain significance were identified whereas in 28 cases (49%) a diagnosis of cardiomyopathy was established. We identified a pathogenic or likely pathogenic variant in 10 cases (18%); in 1 (3%) case with non-specific autopsy findings compared with 9 (32%) cases with autopsy findings diagnostic of cardiomyopathy (p = 0.0054). The yield of genetic testing in SCD cases with autopsy findings consistent with cardiomyopathy is comparable with the yield in cardiomyopathy patients that are alive. Genetic testing in cases with findings of uncertain significance offers lower clinical utility than in cardiomyopathy, with lower yields than detected previously. This highlights the need for stringent evaluation of variant pathogenicity.
Assuntos
Cardiomiopatias/genética , Morte Súbita Cardíaca/etiologia , Genética Forense/normas , Testes Genéticos/normas , Adulto , Autopsia , Cardiomiopatias/epidemiologia , Morte Súbita Cardíaca/epidemiologia , Feminino , Genética Forense/estatística & dados numéricos , Testes Genéticos/estatística & dados numéricos , Humanos , Masculino , Sensibilidade e EspecificidadeRESUMO
BACKGROUND: Young adults with diabetes in Asia represent a heterogeneous group. Using traditional clinical criteria to preselect individuals for testing for maturity-onset diabetes of the young (MODY) may exclude a large proportion from testing. High-sensitivity C-reactive protein (hs-CRP) has shown promise as a biomarker to differentiate hepatic nuclear factor 1 alpha (HNF1A)-MODY from type 2 diabetes. We aimed to compare the use of hs-CRP as a biomarker versus traditional criteria, to guide testing for HNF1A-MODY among a cohort of young adults with diabetes in Singapore. METHODS: A total of 252 adults (age of onset ⩽45 years) and 20 children with diabetes were recruited. Using traditional criteria (family history of diabetes and onset of diabetes ⩽25 years) and an hs-CRP cut off of ⩽0.5 mg/l, 125 and 37 adults, respectively, were identified for HNF1A gene testing. All children underwent HNF1A gene testing. RESULTS: Five adults (5/143, 3.5%) with HNF1A-MODY were identified. There were no HNF1A gene mutations among the children. Traditional criteria correctly identified all five HNF1A-MODY individuals (5/125, 4%), while applying an hs-CRP level of ⩽0.5 mg/l selected just 1 of these 5 for HNF1A gene testing (1/37, 2.7%). None of those with a positive GAD antibody or undetectable C-peptide level had HNF1A-MODY. CONCLUSION: The use of hs-CRP to guide screening for HNF1A-MODY among Asian young adults with diabetes did not improve the diagnostic yield. Applying a combination of age of onset of diabetes under 25 years and a family history of diabetes alone could guide targeted HNF1A-MODY screening in Asians, with an expected yield of 4% diagnosed with HNF1A-MODY among those screened.
RESUMO
BACKGROUND: Sudden arrhythmic death syndrome (SADS) describes a sudden death with negative autopsy and toxicological analysis. Cardiac genetic disease is a likely etiology. OBJECTIVES: This study investigated the clinical utility and combined yield of post-mortem genetic testing (molecular autopsy) in cases of SADS and comprehensive clinical evaluation of surviving relatives. METHODS: We evaluated 302 expertly validated SADS cases with suitable DNA (median age: 24 years; 65% males) who underwent next-generation sequencing using an extended panel of 77 primary electrical disorder and cardiomyopathy genes. Pathogenic and likely pathogenic variants were classified using American College of Medical Genetics (ACMG) consensus guidelines. The yield of combined molecular autopsy and clinical evaluation in 82 surviving families was evaluated. A gene-level rare variant association analysis was conducted in SADS cases versus controls. RESULTS: A clinically actionable pathogenic or likely pathogenic variant was identified in 40 of 302 cases (13%). The main etiologies established were catecholaminergic polymorphic ventricular tachycardia and long QT syndrome (17 [6%] and 11 [4%], respectively). Gene-based rare variants association analysis showed enrichment of rare predicted deleterious variants in RYR2 (p = 5 × 10-5). Combining molecular autopsy with clinical evaluation in surviving families increased diagnostic yield from 26% to 39%. CONCLUSIONS: Molecular autopsy for electrical disorder and cardiomyopathy genes, using ACMG guidelines for variant classification, identified a modest but realistic yield in SADS. Our data highlighted the predominant role of catecholaminergic polymorphic ventricular tachycardia and long QT syndrome, especially the RYR2 gene, as well as the minimal yield from other genes. Furthermore, we showed the enhanced utility of combined clinical and genetic evaluation.
Assuntos
Morte Súbita Cardíaca/etiologia , Testes Genéticos , Adolescente , Adulto , Criança , Feminino , Humanos , Masculino , Adulto JovemRESUMO
Inherited cardiac conditions (ICCs) are characterised by marked genetic and allelic heterogeneity and require extensive sequencing for genetic characterisation. We iteratively optimised a targeted gene capture panel for ICCs that includes disease-causing, putatively pathogenic, research and phenocopy genes (n = 174 genes). We achieved high coverage of the target region on both MiSeq (>99.8% at ≥ 20× read depth, n = 12) and NextSeq (>99.9% at ≥ 20×, n = 48) platforms with 100% sensitivity and precision for single nucleotide variants and indels across the protein-coding target on the MiSeq. In the final assay, 40 out of 43 established ICC genes informative in clinical practice achieved complete coverage (100 % at ≥ 20×). By comparison, whole exome sequencing (WES; â¼ 80×), deep WES (â¼ 500×) and whole genome sequencing (WGS; â¼ 70×) had poorer performance (88.1, 99.2 and 99.3% respectively at ≥ 20×) across the ICC target. The assay described here delivers highly accurate and affordable sequencing of ICC genes, complemented by accessible cloud-based computation and informatics. See Editorial in this issue (DOI: 10.1007/s12265-015-9667-8 ).