Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Chem Res Toxicol ; 33(7): 1791-1797, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32363856

RESUMO

Free radicals and nicotine are components of cigarette smoke that are thought to contribute to the development of smoking-induced diseases. China has the largest number of smokers in the world, yet little is known about the yields of tobacco smoke constituents in different Chinese brands of cigarettes. In this study, gas-phase and particulate-phase free radicals as well as nicotine yields were quantified in mainstream cigarette smoke from five popular Chinese brands and two research cigarettes (3R4F and 1R6F). Mainstream smoke was generated under International Organization of Standardization (ISO) and Canadian Intense (CI) smoking regimens using a linear smoking machine. Levels of free radicals and nicotine were measured by electron paramagnetic resonance spectroscopy (EPR) and gas chromatography with flame-ionization detection, respectively. Under the ISO puffing regimen, Chinese brand cigarettes produced an average of 3.0 ± 1.2 nmol/cig gas-phase radicals, 118 ± 44.7 pmol/cig particulate-phase radicals, and 0.6 ± 0.2 mg/cig nicotine. Under the CI puffing regimen, Chinese brand cigarettes produced an average of 5.6 ± 1.2 nmol/cig gas-phase radicals, 282 ± 92.1 pmol/cig particulate-phase radicals, and 2.1 ± 0.4 mg/cig nicotine. Overall, both gas- and particulate-phase free radicals were substantially lower compared to the research cigarettes under both regimens, whereas no significant differences were observed for nicotine levels. When Chinese brands were compared, the highest free radical and nicotine yields were found in "LL" and "BS" brands, while lowest levels were found in "YY". These results suggested that the lower radical delivery by Chinese cigarettes compared to United States reference cigarettes may be associated with reductions in oxidant-related harm.


Assuntos
Radicais Livres/análise , Nicotiana , Nicotina/análise , Fumaça/análise , China , Produtos do Tabaco , Fumar Tabaco
2.
Chem Res Toxicol ; 32(1): 130-138, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30525517

RESUMO

E-cigarettes (e-cigs) are a diverse and continuously evolving group of products with four generations currently in the market. The National Institute on Drug Abuse (NIDA) standardized research e-cigarette (SREC) is intended to provide researchers with a consistent e-cig device with known characteristics. Thus, we conducted laboratory-based characterizations of oxidants and nicotine in aerosols produced from SREC and other closed-system, breath-activated, commercially available e-cigs (Blu and Vuse). We hypothesized that oxidant and nicotine production will be significantly affected in all devices by changes in puffing parameters. All e-cigs were machine vaped and the aerosols generated were examined for nicotine, carbonyls, and free-radicals while varying the puff-volumes and puff-durations to reflect typical human usage. The data were normalized on a per puff, per gram aerosol, and per milligram nicotine basis. We found that aerosol production generally increased with increasing puff-duration and puff-volume in all e-cigs tested. Increased puff-duration and puff-volume increased nicotine delivery for Blu and Vuse but not the SREC. We report, for the first time, reactive free-radicals in aerosols from all closed-system e-cigs tested, albeit at levels lower than cigarette smoke. Formaldehyde, acetaldehyde, acetone, and propionaldehyde were detected in the aerosols of all tested e-cigs. Carbonyl and free radical production is affected by puff-duration and puff volume. Overall, SREC was more efficient at aerosol and nicotine production than both Blu and Vuse. In terms of carbonyl and free radical levels, SREC delivered lower or similar levels to both other devices.


Assuntos
Acetaldeído/análise , Acetona/análise , Acroleína/análise , Sistemas Eletrônicos de Liberação de Nicotina/normas , Formaldeído/análise , National Institute on Drug Abuse (U.S.)/legislação & jurisprudência , Nicotina/análise , Produtos do Tabaco/normas , Aerossóis/análise , Radicais Livres/análise , Humanos , Estados Unidos
3.
Chem Res Toxicol ; 31(8): 745-751, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-29979036

RESUMO

The addition of charcoal in cigarette filters may be an effective means of reducing many toxicants from tobacco smoke. Free radicals are a highly reactive class of oxidants abundant in cigarette smoke, and here we evaluated the effectiveness of charcoal to reduce free radical delivery by comparing radical yields from commercially available cigarettes with charcoal-infused filters to those without and by examining the effects of incorporating charcoal into conventional cigarette filters on radical production. Commercial cigarettes containing charcoal filters produced 40% fewer gas-phase radicals than did regular cellulose acetate filter cigarettes when smoked using the International Organization of Standardization (ISO, p = 0.07) and Canadian Intense (CI, p < 0.01) smoking protocols. While mean-particulate-phase radicals were 25-27% lower in charcoal cigarettes, differences from noncharcoal products were not significant ( p = 0.06-0.22). When cellulose acetate cigarette filters were modified to incorporate different types and amounts of activated charcoal, reductions in gas-phase (>70%), but not particulate-phase, radicals were observed. The reductions in gas-phase radicals were similar for the three types of charcoal. Decreases in radical production were dose-responsive with increasing amounts of charcoal (25-300 mg) with as little as 25 mg of activated charcoal reducing gas-phase radicals by 41%. In all studies, charcoal had less of an effect on nicotine delivery, which was decreased 33% at the maximal amount of charcoal tested (300 mg). Overall, these results support the potential consideration of charcoal in cigarette filters as a means to reduce exposure to toxic free radicals from cigarettes and other combustible tobacco products.


Assuntos
Carvão Vegetal , Nicotiana/química , Fumaça/análise , Produtos do Tabaco , Cromatografia Gasosa/métodos , Radicais Livres/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA