RESUMO
COVID-19, a WHO-declared public health emergency of worldwide concern, is quickly spreading over the world, posing a physical and mental health hazard. The COVID-19 has resulted in one of the world's most significant worldwide lockdowns, affecting human mental health. In this research work, a modified Long Short-Term Memory (MLSTM)-based Deep Learning model framework is proposed for analyzing COVID-19 effect on emotion and mental health during the pandemic using electroencephalogram (EEG) signals. The participants of this study were volunteers that recovered from COVID-19. The EEG dataset of 40 people is collected to predict emotion and mental health. The results of the MLSTM model are also compared with the other literature classifiers. With an accuracy of 91.26%, the MLSTM beats existing classifiers when using the 70-30 partitioning technique.
Assuntos
COVID-19 , Saúde Mental , Controle de Doenças Transmissíveis , Eletroencefalografia/métodos , Emoções , Humanos , PandemiasRESUMO
Optical character recognition (OCR) can be a subcategory of graphic design that involves extracting text from images or scanned documents. We have chosen to make unique handwritten digits available on the Modified National Institute of Standards and Technology website for this project. The Machine Learning and Depp Learning algorithms are used in this project to measure the accuracy of handwritten displays of letters and numbers. Also, we show the classification accuracy comparison between them. The results showed that the CNN classifier achieved the highest classification accuracy of 98.83%.
Assuntos
Aprendizado Profundo , Redes Neurais de Computação , Algoritmos , Escrita Manual , Aprendizado de MáquinaRESUMO
Breast cancer (BC) is the second leading cause of death in developed and developing nations, accounting for 8% of deaths after lung cancer. Gene mutation, constant pain, size fluctuations, colour (roughness), and breast skin texture are all characteristics of BC. The University of Wisconsin Hospital donated the WDBC dataset, which was created via fine-needle aspiration (biopsies) of the breast. We have implemented multilayer perceptron (MLP), K-nearest neighbor (KNN), genetic programming (GP), and random forest (RF) on the WBCD dataset to classify the benign and malignant patients. The results show that RF has a classification accuracy of 96.24%, which outperforms all the other classifiers.
Assuntos
Neoplasias da Mama , Algoritmos , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Análise por Conglomerados , Feminino , Humanos , Aprendizado de Máquina , Redes Neurais de ComputaçãoRESUMO
This work suggests a method to identify personality traits regarding the targeted film clips in real-time. Such film clips elicit feelings in people while capturing their brain impulses using the electroencephalogram (EEG) devices and examining personality traits. The Myers-Briggs Type Indicator (MBTI) paradigm for determining personality is employed in this study. The fast Fourier transform (FFT) approach is used for feature extraction, and we have used hybrid genetic programming (HGP) for EEG data classification. We used a single-channel NeuroSky MindWave 2 dry electrode unit to obtain the EEG data. In order to collect the data, thirty Hindi and English video clips were placed in a conventional database. Fifty people volunteered to participate in this study and willingly provided brain signals. Using this dataset, we have generated four two-class HGP classifiers (HGP1, HGP2, HGP3, and HGP4), one for each group of MBTI traits overall classification accuracy of the HGP classifier as 82.25% for 10-fold cross-validation partition.
Assuntos
Eletroencefalografia , Personalidade , Encéfalo , Eletroencefalografia/métodos , Análise de Fourier , Humanos , Personalidade/genética , Inventário de PersonalidadeRESUMO
The COVID-19 has resulted in one of the world's most significant worldwide lock-downs, affecting human mental health. Therefore, emotion recognition is becoming one of the essential research areas among various world researchers. Treatment that is efficacious and diagnosed early for negative emotions is the only way to save people from mental health problems. Genetic programming, a very important research area of artificial intelligence, proves its potential in almost every field. Therefore, in this study, a genetic program-based feature selection (FSGP) technique is proposed. A fourteen-channel EEG device gives 70 features for the input brain signal; with the help of GP, all the irrelevant and redundant features are separated, and 32 relevant features are selected. The proposed model achieves a classification accuracy of 85% that outmatches other prior works.
Assuntos
Inteligência Artificial , COVID-19 , Algoritmos , Controle de Doenças Transmissíveis , Eletroencefalografia/métodos , Emoções , HumanosRESUMO
Yoga is a 5000-year-old practice developed in ancient India by the Indus-Sarasvati civilization. The word yoga means deep association and union of mind with the body. It is used to keep both mind and body in equilibration in all flip-flops of life by means of asana, meditation, and several other techniques. Nowadays, yoga has gained worldwide attention due to increased stress levels in the modern lifestyle, and there are numerous methods or resources for learning yoga. Yoga can be practiced in yoga centers, through personal tutors, and can also be learned on one's own with the help of the Internet, books, recorded clips, etc. In fast-paced lifestyles, many people prefer self-learning because the abovementioned resources might not be available all the time. But in self-learning, one may not find an incorrect pose. Incorrect posture can be harmful to one's health, resulting in acute pain and long-term chronic concerns. In this paper, deep learning-based techniques are developed to detect incorrect yoga posture. With this method, the users can select the desired pose for practice and can upload recorded videos of their yoga practice pose. The user pose is sent to train models that output the abnormal angles detected between the actual pose and the user pose. With these outputs, the system advises the user to improve the pose by specifying where the yoga pose is going wrong. The proposed method was compared to several state-of-the-art methods, and it achieved outstanding accuracy of 0.9958 while requiring less computational complexity.
Assuntos
Aprendizado Profundo , Meditação , Yoga , Atenção , Retroalimentação , HumanosRESUMO
In this paper, a deep long short term memory (DeepLSTM) network to classify personality traits using the electroencephalogram (EEG) signals is implemented. For this research, the Myers-Briggs Type Indicator (MBTI) model for predicting personality is used. There are four groups in MBTI, and each group consists of two traits versus each other; i.e., out of these two traits, every individual will have one personality trait in them. We have collected EEG data using a single NeuroSky MindWave Mobile 2 dry electrode unit. For data collection, 40 Hindi and English video clips were included in a standard database. All clips provoke various emotions, and data collection is focused on these emotions, as the clips include targeted, inductive scenes of personality. Fifty participants engaged in this research and willingly agreed to provide brain signals. We compared the performance of our deep learning DeepLSTM model with other state-of-the-art-based machine learning classifiers such as artificial neural network (ANN), K-nearest neighbors (KNN), LibSVM, and hybrid genetic programming (HGP). The analysis shows that, for the 10-fold partitioning method, the DeepLSTM model surpasses the other state-of-the-art models and offers a maximum classification accuracy of 96.94%. The proposed DeepLSTM model was also applied to the publicly available ASCERTAIN EEG dataset and showed an improvement over the state-of-the-art methods.