Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(10): 5572-5595, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38499492

RESUMO

Adaptation to variations in pH is crucial for the ability of Helicobacter pylori to persist in the human stomach. The acid responsive two-component system ArsRS, constitutes the global regulon that responds to acidic conditions, but molecular details of how transcription is affected by the ArsR response regulator remains poorly understood. Using a combination of DNA-binding studies, in vitro transcription assays, and H. pylori mutants, we demonstrate that phosphorylated ArsR (ArsR-P) forms an active protein complex that binds DNA with high specificity in order to affect transcription. Our data showed that DNA topology is key for DNA binding. We found that AT-rich DNA sequences direct ArsR-P to specific sites and that DNA-bending proteins are important for the effect of ArsR-P on transcription regulation. The repression of sabA transcription is mediated by ArsR-P with the support of Hup and is affected by simple sequence repeats located upstream of the sabA promoter. Here stochastic events clearly contribute to the fine-tuning of pH-dependent gene regulation. Our results reveal important molecular aspects for how ArsR-P acts to repress transcription in response to acidic conditions. Such transcriptional control likely mediates shifts in bacterial positioning in the gastric mucus layer.


Assuntos
Adesinas Bacterianas , Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Helicobacter pylori , Adesinas Bacterianas/metabolismo , Adesinas Bacterianas/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , DNA Bacteriano/metabolismo , DNA Bacteriano/genética , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Concentração de Íons de Hidrogênio , Fosforilação , Regiões Promotoras Genéticas , Ligação Proteica , Transcrição Gênica/genética , Mutação
2.
Proc Natl Acad Sci U S A ; 111(25): E2586-95, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24920590

RESUMO

Ler, a homolog of H-NS in enteropathogenic Escherichia coli (EPEC), plays a critical role in the expression of virulence genes encoded by the pathogenic island, locus of enterocyte effacement (LEE). Although Ler acts as an antisilencer of multiple LEE operons by alleviating H-NS-mediated silencing, it represses its own expression from two LEE1 P1 promoters, P1A and P1B, that are separated by 10 bp. Various in vitro biochemical methods were used in this study to elucidate the mechanism underlying transcription repression by Ler. Ler acts through two AATT motifs, centered at position -111.5 on the coding strand and at +65.5 on the noncoding strand, by simultaneously repressing P1A and P1B through DNA-looping. DNA-looping was visualized using atomic force microscopy. It is intriguing that an antisilencing protein represses transcription, not by steric exclusion of RNA polymerase, but by DNA-looping. We propose that the DNA-looping prevents further processing of open promoter complex (RPO) at these promoters during transcription initiation.


Assuntos
DNA Bacteriano/metabolismo , Escherichia coli Enteropatogênica/metabolismo , Proteínas de Escherichia coli/metabolismo , Loci Gênicos/fisiologia , Elementos de Resposta/fisiologia , Transativadores/metabolismo , Iniciação da Transcrição Genética/fisiologia , DNA Bacteriano/genética , Escherichia coli Enteropatogênica/genética , Proteínas de Escherichia coli/genética , Óperon/fisiologia , Transativadores/genética
3.
Front Cell Infect Microbiol ; 14: 1287557, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577619

RESUMO

Despite extensive knowledge of antibiotic-targeted bacterial cell death, deeper understanding of antibiotic tolerance mechanisms is necessary to combat multi-drug resistance in the global healthcare settings. Regulatory RNAs in bacteria control important cellular processes such as cell division, cellular respiration, metabolism, and virulence. Here, we investigated how exposing Escherichia coli to the moderately effective first-generation antibiotic cephalothin alters transcriptional and post-transcriptional dynamics. Bacteria switched from active aerobic respiration to anaerobic adaptation via an FnrS and Tp2 small RNA-mediated post-transcriptional regulatory circuit. From the early hours of antibiotic exposure, FnrS was involved in regulating reactive oxygen species levels, and delayed oxygen consumption in bacteria. We demonstrated that bacteria strive to maintain cellular homeostasis via sRNA-mediated sudden respiratory changes upon sublethal antibiotic exposure.


Assuntos
Antibacterianos , RNA , Antibacterianos/farmacologia , Anaerobiose , Respiração Celular , Bactérias , Respiração , Regulação Bacteriana da Expressão Gênica
4.
Sci Rep ; 6: 28168, 2016 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-27306928

RESUMO

Polymyxins are last-resort antibiotics for treating infections of Gram-negative bacteria. The recent emergence of polymyxin-resistant bacteria, however, urgently demands clinical optimisation of polymyxin use to minimise further evolution of resistance. In this study we developed a novel combination therapy using minimal concentrations of polymyxin B. After large-scale screening of Streptomyces secondary metabolites, we identified a reliable polymixin synergist and confirmed as netropsin using high-pressure liquid chromatography, nuclear magnetic resonance, and mass spectrometry followed by in vitro assays using various Gram-negative pathogenic bacteria. To evaluate the effectiveness of combining polymixin B and netropsin in vivo, we performed survival analysis on greater wax moth Galleria mellonella infected with colistin-resistant clinical Acinetobacter baumannii isolates as well as Escherichia coli, Shigella flexineri, Salmonella typhimuruim, and Pseudomonas aeruginosa. The survival of infected G. mellonella was significantly higher when treated with polymyxin B and netropsin in combination than when treated with polymyxin B or netropsin alone. We propose a netropsin combination therapy that minimises the use of polymyxin B when treating infections with multidrug resistant Gram-negative bacteria.


Assuntos
Infecções por Acinetobacter/tratamento farmacológico , Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/uso terapêutico , Mariposas/microbiologia , Netropsina/uso terapêutico , Polimixina B/uso terapêutico , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/isolamento & purificação , Animais , Farmacorresistência Bacteriana Múltipla/fisiologia , Sinergismo Farmacológico , Quimioterapia Combinada , Escherichia coli/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Modelos Animais , Pseudomonas aeruginosa/efeitos dos fármacos , Salmonella typhimurium/efeitos dos fármacos , Shigella flexneri/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA