Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 465(7297): 473-7, 2010 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-20505728

RESUMO

Lung cancer is the leading cause of cancer-related mortality worldwide, with non-small-cell lung carcinomas in smokers being the predominant form of the disease. Although previous studies have identified important common somatic mutations in lung cancers, they have primarily focused on a limited set of genes and have thus provided a constrained view of the mutational spectrum. Recent cancer sequencing efforts have used next-generation sequencing technologies to provide a genome-wide view of mutations in leukaemia, breast cancer and cancer cell lines. Here we present the complete sequences of a primary lung tumour (60x coverage) and adjacent normal tissue (46x). Comparing the two genomes, we identify a wide variety of somatic variations, including >50,000 high-confidence single nucleotide variants. We validated 530 somatic single nucleotide variants in this tumour, including one in the KRAS proto-oncogene and 391 others in coding regions, as well as 43 large-scale structural variations. These constitute a large set of new somatic mutations and yield an estimated 17.7 per megabase genome-wide somatic mutation rate. Notably, we observe a distinct pattern of selection against mutations within expressed genes compared to non-expressed genes and in promoter regions up to 5 kilobases upstream of all protein-coding genes. Furthermore, we observe a higher rate of amino acid-changing mutations in kinase genes. We present a comprehensive view of somatic alterations in a single lung tumour, and provide the first evidence, to our knowledge, of distinct selective pressures present within the tumour environment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Genoma Humano/genética , Neoplasias Pulmonares/genética , Mutação Puntual/genética , Análise Mutacional de DNA , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Proto-Oncogene Mas , Seleção Genética/genética
2.
Nature ; 466(7308): 869-73, 2010 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-20668451

RESUMO

The systematic characterization of somatic mutations in cancer genomes is essential for understanding the disease and for developing targeted therapeutics. Here we report the identification of 2,576 somatic mutations across approximately 1,800 megabases of DNA representing 1,507 coding genes from 441 tumours comprising breast, lung, ovarian and prostate cancer types and subtypes. We found that mutation rates and the sets of mutated genes varied substantially across tumour types and subtypes. Statistical analysis identified 77 significantly mutated genes including protein kinases, G-protein-coupled receptors such as GRM8, BAI3, AGTRL1 (also called APLNR) and LPHN3, and other druggable targets. Integrated analysis of somatic mutations and copy number alterations identified another 35 significantly altered genes including GNAS, indicating an expanded role for galpha subunits in multiple cancer types. Furthermore, our experimental analyses demonstrate the functional roles of mutant GNAO1 (a Galpha subunit) and mutant MAP2K4 (a member of the JNK signalling pathway) in oncogenesis. Our study provides an overview of the mutational spectra across major human cancers and identifies several potential therapeutic targets.


Assuntos
Genes Neoplásicos/genética , Mutação/genética , Neoplasias/genética , Neoplasias/metabolismo , Transdução de Sinais/genética , Neoplasias da Mama/classificação , Neoplasias da Mama/genética , Variações do Número de Cópias de DNA/genética , Análise Mutacional de DNA , Feminino , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Humanos , Neoplasias Pulmonares/classificação , Neoplasias Pulmonares/genética , MAP Quinase Quinase 4/genética , Masculino , Neoplasias/enzimologia , Neoplasias/patologia , Neoplasias Ovarianas/classificação , Neoplasias Ovarianas/genética , Neoplasias da Próstata/classificação , Neoplasias da Próstata/genética , Proteínas Quinases/genética , Receptores Acoplados a Proteínas G/genética
3.
Genome Res ; 22(12): 2315-27, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23033341

RESUMO

Lung cancer is a highly heterogeneous disease in terms of both underlying genetic lesions and response to therapeutic treatments. We performed deep whole-genome sequencing and transcriptome sequencing on 19 lung cancer cell lines and three lung tumor/normal pairs. Overall, our data show that cell line models exhibit similar mutation spectra to human tumor samples. Smoker and never-smoker cancer samples exhibit distinguishable patterns of mutations. A number of epigenetic regulators, including KDM6A, ASH1L, SMARCA4, and ATAD2, are frequently altered by mutations or copy number changes. A systematic survey of splice-site mutations identified 106 splice site mutations associated with cancer specific aberrant splicing, including mutations in several known cancer-related genes. RAC1b, an isoform of the RAC1 GTPase that includes one additional exon, was found to be preferentially up-regulated in lung cancer. We further show that its expression is significantly associated with sensitivity to a MAP2K (MEK) inhibitor PD-0325901. Taken together, these data present a comprehensive genomic landscape of a large number of lung cancer samples and further demonstrate that cancer-specific alternative splicing is a widespread phenomenon that has potential utility as therapeutic biomarkers. The detailed characterizations of the lung cancer cell lines also provide genomic context to the vast amount of experimental data gathered for these lines over the decades, and represent highly valuable resources for cancer biology.


Assuntos
Processamento Alternativo , Regulação Neoplásica da Expressão Gênica , Genoma Humano/genética , Neoplasias Pulmonares/genética , Mutação , Transcriptoma , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Linhagem Celular Tumoral , Variações do Número de Cópias de DNA , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Epigenômica , Éxons , Marcadores Genéticos , Heterozigoto , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Histona-Lisina N-Metiltransferase , Humanos , Cariotipagem/métodos , Neoplasias Pulmonares/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes , Análise de Sequência de RNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
4.
Nat Genet ; 44(10): 1111-6, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22941189

RESUMO

Small-cell lung cancer (SCLC) is an exceptionally aggressive disease with poor prognosis. Here, we obtained exome, transcriptome and copy-number alteration data from approximately 53 samples consisting of 36 primary human SCLC and normal tissue pairs and 17 matched SCLC and lymphoblastoid cell lines. We also obtained data for 4 primary tumors and 23 SCLC cell lines. We identified 22 significantly mutated genes in SCLC, including genes encoding kinases, G protein-coupled receptors and chromatin-modifying proteins. We found that several members of the SOX family of genes were mutated in SCLC. We also found SOX2 amplification in ∼27% of the samples. Suppression of SOX2 using shRNAs blocked proliferation of SOX2-amplified SCLC lines. RNA sequencing identified multiple fusion transcripts and a recurrent RLF-MYCL1 fusion. Silencing of MYCL1 in SCLC cell lines that had the RLF-MYCL1 fusion decreased cell proliferation. These data provide an in-depth view of the spectrum of genomic alterations in SCLC and identify several potential targets for therapeutic intervention.


Assuntos
Amplificação de Genes , Neoplasias Pulmonares/genética , Fatores de Transcrição SOXB1/genética , Carcinoma de Pequenas Células do Pulmão/genética , Sequência de Bases , Linhagem Celular Tumoral , Variações do Número de Cópias de DNA , Análise Mutacional de DNA , Exoma , Expressão Gênica , Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias Pulmonares/metabolismo , Dados de Sequência Molecular , Mutação , Proteínas de Fusão Oncogênica/genética , Proteínas Quinases/genética , Fatores de Transcrição SOXB1/metabolismo , Carcinoma de Pequenas Células do Pulmão/metabolismo
5.
BMC Med Genomics ; 4: 11, 2011 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-21261984

RESUMO

BACKGROUND: Readthrough fusions across adjacent genes in the genome, or transcription-induced chimeras (TICs), have been estimated using expressed sequence tag (EST) libraries to involve 4-6% of all genes. Deep transcriptional sequencing (RNA-Seq) now makes it possible to study the occurrence and expression levels of TICs in individual samples across the genome. METHODS: We performed single-end RNA-Seq on three human prostate adenocarcinoma samples and their corresponding normal tissues, as well as brain and universal reference samples. We developed two bioinformatics methods to specifically identify TIC events: a targeted alignment method using artificial exon-exon junctions within 200,000 bp from adjacent genes, and genomic alignment allowing splicing within individual reads. We performed further experimental verification and characterization of selected TIC and fusion events using quantitative RT-PCR and comparative genomic hybridization microarrays. RESULTS: Targeted alignment against artificial exon-exon junctions yielded 339 distinct TIC events, including 32 gene pairs with multiple isoforms. The false discovery rate was estimated to be 1.5%. Spliced alignment to the genome was less sensitive, finding only 18% of those found by targeted alignment in 33-nt reads and 59% of those in 50-nt reads. However, spliced alignment revealed 30 cases of TICs with intervening exons, in addition to distant inversions, scrambled genes, and translocations. Our findings increase the catalog of observed TIC gene pairs by 66%.We verified 6 of 6 predicted TICs in all prostate samples, and 2 of 5 predicted novel distant gene fusions, both private events among 54 prostate tumor samples tested. Expression of TICs correlates with that of the upstream gene, which can explain the prostate-specific pattern of some TIC events and the restriction of the SLC45A3-ELK4 e4-e2 TIC to ERG-negative prostate samples, as confirmed in 20 matched prostate tumor and normal samples and 9 lung cancer cell lines. CONCLUSIONS: Deep transcriptional sequencing and analysis with targeted and spliced alignment methods can effectively identify TIC events across the genome in individual tissues. Prostate and reference samples exhibit a wide range of TIC events, involving more genes than estimated previously using ESTs. Tissue specificity of TIC events is correlated with expression patterns of the upstream gene. Some TIC events, such as MSMB-NCOA4, may play functional roles in cancer.


Assuntos
Adenocarcinoma/genética , Fusão Gênica , Neoplasias da Próstata/genética , Análise de Sequência de RNA/métodos , Adenocarcinoma/patologia , Sequência de Bases , Hibridização Genômica Comparativa/métodos , Bases de Dados Genéticas , Etiquetas de Sequências Expressas , Humanos , Masculino , Neoplasias da Próstata/patologia , Padrões de Referência , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA