Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Nat Immunol ; 23(5): 731-742, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35523960

RESUMO

T cell specificity and function are linked during development, as MHC-II-specific TCR signals generate CD4 helper T cells and MHC-I-specific TCR signals generate CD8 cytotoxic T cells, but the basis remains uncertain. We now report that switching coreceptor proteins encoded by Cd4 and Cd8 gene loci functionally reverses the T cell immune system, generating CD4 cytotoxic and CD8 helper T cells. Such functional reversal reveals that coreceptor proteins promote the helper-lineage fate when encoded by Cd4, but promote the cytotoxic-lineage fate when encoded in Cd8-regardless of the coreceptor proteins each locus encodes. Thus, T cell lineage fate is determined by cis-regulatory elements in coreceptor gene loci and is not determined by the coreceptor proteins they encode, invalidating coreceptor signal strength as the basis of lineage fate determination. Moreover, we consider that evolution selected the particular coreceptor proteins that Cd4 and Cd8 gene loci encode to avoid generating functionally reversed T cells because they fail to promote protective immunity against environmental pathogens.


Assuntos
Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Antígenos CD4/metabolismo , Antígenos CD8/metabolismo , Diferenciação Celular , Linhagem da Célula/genética , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Timo/metabolismo
2.
EMBO Rep ; 22(2): e50613, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33345425

RESUMO

One major factor that contributes to the virulence of Pseudomonas aeruginosa is its ability to reside and replicate unchallenged inside airway epithelial cells. The mechanism by which P. aeruginosa escapes destruction by intracellular host defense mechanisms, such as autophagy, is not known. Here, we show that the type III secretion system effector protein ExoS facilitates P. aeruginosa survival in airway epithelial cells by inhibiting autophagy in host cells. Autophagy inhibition is independent of mTOR activity, as the latter is also inhibited by ExoS, albeit by a different mechanism. Deficiency of the critical autophagy gene Atg7 in airway epithelial cells, both in vitro and in mouse models, greatly enhances the survival of ExoS-deficient P. aeruginosa but does not affect the survival of ExoS-containing bacteria. The inhibitory effect of ExoS on autophagy and mTOR depends on the activity of its ADP-ribosyltransferase domain. Inhibition of mTOR is caused by ExoS-mediated ADP ribosylation of RAS, whereas autophagy inhibition is due to the suppression of autophagic Vps34 kinase activity.


Assuntos
ADP Ribose Transferases , Toxinas Bacterianas , Pseudomonas aeruginosa , ADP Ribose Transferases/genética , Animais , Autofagia , Camundongos , Serina-Treonina Quinases TOR/genética
3.
Immunity ; 39(3): 537-47, 2013 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-24035364

RESUMO

Autophagy and phagocytosis are conserved cellular functions involved in innate immunity. However, the nature of their interactions remains unclear. We evaluated the role of autophagy in regulating phagocytosis in macrophages from myeloid-specific autophagy-related gene 7-deficient (Atg7⁻/⁻) mice. Atg7⁻/⁻ macrophages exhibited higher bacterial uptake when infected with Mycobacterium tuberculosis (Mtb) or with M. tuberculosis var. bovis BCG (BCG). In addition, BCG-infected Atg7⁻/⁻ mice showed increased bacterial loads and exacerbated lung inflammatory responses. Atg7⁻/⁻ macrophages had increased expression of two class A scavenger receptors: macrophage receptor with collagenous structure (MARCO) and macrophage scavenger receptor 1 (MSR1). The increase in scavenger receptors was caused by increased activity of the nuclear factor (erythroid-derived 2)-like 2 (NFE2L2) transcription factor resulting from accumulated sequestosome 1 (SQSTM1 or p62) in Atg7⁻/⁻ macrophages. These insights increase our understanding of the host-pathogen relationship and suggest that therapeutic strategies should be designed to include modulation of both phagocytosis and autophagy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia/imunologia , Proteínas de Choque Térmico/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fagocitose/imunologia , Receptores Imunológicos/biossíntese , Receptores Depuradores Classe A/biossíntese , Animais , Proteína 7 Relacionada à Autofagia , Carga Bacteriana/imunologia , Células Cultivadas , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Infecções por Mycobacterium/imunologia , Mycobacterium bovis/crescimento & desenvolvimento , Mycobacterium bovis/imunologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/imunologia , Pneumonia/imunologia , Pneumonia/microbiologia , Receptores Depuradores/biossíntese , Receptores Depuradores/imunologia , Proteína Sequestossoma-1 , Regulação para Cima
4.
J Immunol ; 204(12): 3351-3359, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32321756

RESUMO

During normal T cell development in the thymus, αß TCRs signal immature thymocytes to differentiate into mature T cells by binding to peptide-MHC ligands together with CD4/CD8 coreceptors. Conversely, in MHC and CD4/CD8 coreceptor-deficient mice, the thymus generates mature T cells expressing MHC-independent TCRs that recognize native conformational epitopes rather than linear antigenic-peptides presented by MHC. To date, no structural information of MHC-independent TCRs is available, and their structural recognition of non-MHC ligand remains unknown. To our knowledge in this study, we determined the first structures of two murine MHC-independent TCRs (A11 and B12A) that bind with high nanomolar affinities to mouse adhesion receptor CD155. Solution binding demonstrated the Vαß-domain is responsible for MHC-independent B12A recognition of its ligand. Analysis of A11 and B12A sequences against various MHC-restricted and -independent TCR sequence repertoires showed that individual V-genes of A11 and B12A did not exhibit preference against MHC-restriction. Likewise, CDR3 alone did not discriminate against MHC binding, suggesting VDJ recombination together with Vα/Vß pairing determine their MHC-independent specificity for CD155. The structures of A11 and B12A TCR are nearly identical to those of MHC-restricted TCR, including the conformations of CDR1 and 2. Mutational analysis, together with negative-staining electron microscopy images, showed that the CDR regions of A11 and B12A recognized epitopes on D1 domain of CD155, a region also involved in CD155 binding to poliovirus and Tactile in human. Taken together, MHC-independent TCRs adopt canonical TCR structures to recognize native Ags, highlighting the importance of thymic selection in determining TCR ligand specificity.


Assuntos
Complexo Principal de Histocompatibilidade/fisiologia , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Receptores Virais/metabolismo , Animais , Células HEK293 , Humanos , Ligantes , Camundongos , Peptídeos/metabolismo , Poliovirus/metabolismo , Ligação Proteica , Domínios Proteicos , Timócitos/metabolismo , Recombinação V(D)J/fisiologia
5.
Int J Mol Sci ; 21(12)2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32560429

RESUMO

Alpha one antitrypsin (α1AT), a serine proteinase inhibitor primarily produced by the liver, protects pulmonary tissue from neutrophil elastase digestion. Mutations of the SERPINA1 gene results in a misfolded α1AT protein which aggregates inside hepatocytes causing cellular damage. Therefore, inhibition of mutant α1AT production is one practical strategy to alleviate liver damage. Here we show that proteasome inhibitors can selectively downregulate α1AT expression in human hepatocytes by suppressing the translation of α1AT. Translational suppression of α1AT is mediated by phosphorylation of eukaryotic translation initiation factor 2α and increased association of RNA binding proteins, especially stress granule protein Ras GAP SH3 binding protein (G3BP1), with α1AT mRNA. Treatment of human-induced pluripotent stem cell-derived hepatocytes with a proteasome inhibitor also results in translational inhibition of mutant α1AT in a similar manner. Together we revealed a previously undocumented role of proteasome inhibitors in the regulation of α1AT translation.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Inibidores de Proteassoma/farmacologia , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , alfa 1-Antitripsina/genética , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Estresse Fisiológico , alfa 1-Antitripsina/biossíntese
6.
J Immunol ; 194(11): 5407-16, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25888640

RESUMO

Autophagy is an important component of the immune response. However, the functions of autophagy in human diseases are much less understood. We studied biological consequences of autophagy deficiency in mice lacking the essential autophagy gene Atg7 or Atg5 in myeloid cells. Surprisingly, these mice presented with spontaneous sterile lung inflammation, characterized by marked recruitment of inflammatory cells, submucosal thickening, goblet cell metaplasia, and increased collagen content. Lung inflammation was associated with increase in several proinflammatory cytokines in the bronchoalveolar lavage and in serum. This inflammation was largely driven by IL-18 as a result of constitutive inflammasome activation. Following i.p. LPS injection, autophagy-deficient mice had higher levels of proinflammatory cytokines in lungs and in serum, as well as increased mortality, than control mice. Intranasal bleomycin challenge exacerbated lung inflammation in autophagy-deficient mice and produced more severe fibrotic changes than in control mice. These results uncover a new and important role for autophagy as negative regulator of lung inflammation.


Assuntos
Autofagia/imunologia , Interleucina-18/imunologia , Proteínas Associadas aos Microtúbulos/genética , Pneumonia/imunologia , Animais , Proteína 5 Relacionada à Autofagia , Proteína 7 Relacionada à Autofagia , Bleomicina/farmacologia , Líquido da Lavagem Broncoalveolar/imunologia , Colágeno/metabolismo , Citocinas/sangue , Citocinas/metabolismo , Fibrose/genética , Fibrose/imunologia , Células Caliciformes/imunologia , Inflamassomos/imunologia , Interleucina-18/genética , Lipopolissacarídeos/administração & dosagem , Pulmão/imunologia , Pulmão/patologia , Metaplasia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pneumonia/mortalidade , Pneumonia/patologia
7.
J Biol Chem ; 289(38): 26525-26532, 2014 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-25077962

RESUMO

Dendritic cells (DCs) are the most potent antigen-presenting cells (APCs) in the immune system. DCs present antigens to CD8 and CD4 T cells in the context of class I or II MHC. Recent evidence suggests that autophagy, a conserved intracellular degradation pathway, regulates class II antigen presentation. In vitro studies have shown that deletion of autophagy-related genes reduced antigen presentation by APCs to CD4 T cells. In vivo studies confirmed these findings in the context of infectious diseases. However, the relevance of autophagy-mediated antigen presentation in autoimmunity remains to be elucidated. Here, we report that loss of autophagy-related gene 7 (Atg7) in DCs ameliorated experimental autoimmune encephalomyelitis (EAE), a CD4 T cell-mediated mouse model of multiple sclerosis, by reducing in vivo priming of T cells. In contrast, severity of hapten-induced contact hypersensitivity, in which CD8 T cells and NK cells play major roles, was unaffected. Administration of the autophagy-lysosomal inhibitor chloroquine, before EAE onset, delayed disease progression and, when administered after the onset, reduced disease severity. Our data show that autophagy is required in DCs for induction of EAE and suggest that autophagy might be a potential target for treating CD4 T cell-mediated autoimmune conditions.


Assuntos
Autofagia , Células Dendríticas/fisiologia , Encefalomielite Autoimune Experimental/imunologia , Proteínas Associadas aos Microtúbulos/genética , Animais , Apresentação de Antígeno , Autofagia/efeitos dos fármacos , Proteína 7 Relacionada à Autofagia , Linfócitos T CD4-Positivos/imunologia , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/patologia , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/metabolismo , Baço/imunologia , Baço/patologia , Timo/imunologia , Timo/patologia
8.
Cell Microbiol ; 16(11): 1637-45, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25237740

RESUMO

Eukaryotic cells utilize two main secretory pathways to transport proteins to the extracellular space. Proteins with a leader signal sequence often undergo co-translational transport into the endoplasmic reticulum (ER), and then to the Golgi apparatus before they reach their destination. This pathway is called the conventional secretory pathway. Proteins without signal peptides can bypass this ER-Golgi system and are secreted by a variety of mechanisms collectively called the unconventional secretory pathway. The molecular mechanisms of unconventional secretion are emerging. Autophagy is a conserved bulk degradation mechanism that regulates many intracellular functions. Recent evidence implicates autophagy in the secretory pathway. This review focuses on potential secretory roles of autophagy and how they could modulate the functions of innate immune cells that secrete a wide range of mediators in response to environmental and biological stimuli. We provide a brief overview of the secretory pathways, enumerate the potential mechanistic themes by which autophagy interacts with these pathways and describe their relevance in the context of innate immune cell function.


Assuntos
Autofagia , Células/imunologia , Células/metabolismo , Proteínas/metabolismo , Animais , Humanos , Mamíferos
9.
Am J Respir Crit Care Med ; 189(1): 16-29, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24251647

RESUMO

RATIONALE: IL-4Rα, the common receptor component for IL-4 and IL-13, plays a critical role in IL-4- and IL-13-mediated signaling pathways that regulate airway inflammation and remodeling. However, the regulatory mechanisms underlying IL-4Rα turnover and its signal termination remain elusive. OBJECTIVES: To evaluate the role of STUB1 (STIP1 homology and U-Box containing protein 1) in regulating IL-4R signaling in airway inflammation. METHODS: The roles of STUB1 in IL-4Rα degradation and its signaling were investigated by immunoblot, immunoprecipitation, and flow cytometry. The involvement of STUB1 in airway inflammation was determined in vivo by measuring lung inflammatory cells infiltration, mucus production, serum lgE levels, and alveolar macrophage M2 activation in STUB1(-/-) mice. STUB1 expression was evaluated in airway epithelium of patients with asthma and lung tissues of subjects with chronic obstructive pulmonary disease. MEASUREMENTS AND MAIN RESULTS: STUB1 interacted with IL-4Rα and targeted it for ubiquitination-mediated proteasomal degradation, terminating IL-4 or IL-13 signaling. STUB1 knockout cells showed increased levels of IL-4Rα and sustained STAT6 activation, whereas STUB1 overexpression reduced IL-4Rα levels. Mice deficient in STUB1 had spontaneous airway inflammation, alternative M2 activation of alveolar macrophage, and increased serum IgE. STUB1 levels were increased in airways of subjects with asthma or chronic obstructive pulmonary disease, suggesting that up-regulation of STUB1 might be an important feedback mechanism to dampen IL-4R signaling in airway inflammation. CONCLUSIONS: Our study identified a previously uncharacterized role for STUB1 in regulating IL-4R signaling, which might provide a new strategy for attenuating airway inflammation.


Assuntos
Pneumonia/fisiopatologia , Receptores de Interleucina-4/fisiologia , Transdução de Sinais/fisiologia , Ubiquitina-Proteína Ligases/fisiologia , Adulto , Animais , Asma/fisiopatologia , Criança , Regulação para Baixo/fisiologia , Feminino , Citometria de Fluxo , Humanos , Immunoblotting , Imunoprecipitação , Ativação de Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Knockout , Complexo de Endopeptidases do Proteassoma/fisiologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Superfície Celular/fisiologia , Fator de Transcrição STAT6/fisiologia , Ubiquitina/fisiologia
10.
J Biol Chem ; 288(50): 35886-95, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24178293

RESUMO

The association between altered proteostasis and inflammatory disorders has been increasingly recognized, but the underlying mechanisms are not well understood. In this study, we show that deficiency of either autophagy or sequestosome 1 (p62 or SQSTM) led to inflammasome hyperactivation in response to LPS and ATP in primary macrophages and in mice in vivo. Importantly, induction of protein misfolding by puromycin, thapsigargin, or geldanamycin resulted in inflammasome activation that was more pronounced in autophagy- or p62-deficient macrophages. Accumulation of misfolded proteins caused inflammasome activation by inducing generation of nonmitochondrial reactive oxygen species and lysosomal damage, leading to release of cathepsin B. Our results suggest that altered proteostasis results in inflammasome activation and thus provide mechanisms for the association of altered proteostasis with inflammatory disorders.


Assuntos
Homeostase , Inflamassomos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Animais , Autofagia , Proteínas de Transporte/metabolismo , Catepsina B/metabolismo , Linhagem Celular , Proteínas de Choque Térmico/deficiência , Humanos , Lisossomos/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Dobramento de Proteína , Espécies Reativas de Oxigênio/metabolismo , Proteína Sequestossoma-1
11.
J Genet Genomics ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38849111

RESUMO

Histone citrullination, an important post-translational modification mediated by peptidyl arginine deiminases, is essential for many physiological processes and epigenetic regulation. However, the causal relationship between histone citrullination and specific gene regulation remains unresolved. In this study, we develop a programmable epigenetic editor by fusing the peptidyl arginine deiminase PPAD from Porphyromonas gingivalis with dCas9. With the assistance of gRNA, PPAD-dCas9 can recruit peptidyl arginine deiminases to specific genomic loci, enabling direct manipulation of the epigenetic landscape and regulation of gene expression. Our citrullination editor allows for site-specific manipulation of histone H3R2,8,17 and 26 at target human gene loci, resulting in the activation or suppression of different genes in a locus-specific manner. Moreover, the epigenetic effects of the citrullination editor are specific and sustained. This epigenetic editor offers an accurate and efficient tool for exploring gene regulation of histone citrullination.

12.
Front Immunol ; 13: 953160, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35911724

RESUMO

Understanding the generation of an MHC-restricted T cell repertoire is the cornerstone of modern T cell immunology. The unique ability of αßT cells to only recognize peptide antigens presented by MHC molecules but not conformational antigens is referred to as MHC restriction. How MHC restriction is imposed on a very large T cell receptor (TCR) repertoire is still heavily debated. We recently proposed the selection model, which posits that newly re-arranged TCRs can structurally recognize a wide variety of antigens, ranging from peptides presented by MHC molecules to native proteins like cell surface markers. However, on a molecular level, the sequestration of the essential tyrosine kinase Lck by the coreceptors CD4 and CD8 allows only MHC-restricted TCRs to signal. In the absence of Lck sequestration, MHC-independent TCRs can signal and instruct the generation of mature αßT cells that can recognize native protein ligands. The selection model thus explains how only MHC-restricted TCRs can signal and survive thymic selection. In this review, we will discuss the genetic evidence that led to our selection model. We will summarize the selection mechanism and structural properties of MHC-independent TCRs and further discuss the various non-MHC ligands we have identified.


Assuntos
Receptores de Antígenos de Linfócitos T , Linfócitos T , Antígenos/metabolismo
13.
Front Immunol ; 11: 1216, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32612609

RESUMO

MHC-independent αßTCRs (TCRs) recognize conformational epitopes on native self-proteins and arise in mice lacking both MHC and CD4/CD8 coreceptor proteins. Although naturally generated in the thymus, these TCRs resemble re-engineered therapeutic chimeric antigen receptor (CAR) T cells in their specificity for MHC-independent ligands. Here we identify naturally arising MHC-independent TCRs reactive to three native self-proteins (CD48, CD102, and CD155) involved in cell adhesion. We report that naturally arising MHC-independent TCRs require high affinity TCR-ligand engagements in the thymus to signal positive selection and that high affinity positive selection generates a peripheral TCR repertoire with limited diversity and increased self-reactivity. We conclude that the affinity of TCR-ligand engagements required to signal positive selection in the thymus inversely determines the diversity and self-tolerance of the mature TCR repertoire that is selected.


Assuntos
Seleção Clonal Mediada por Antígeno , Complexo Principal de Histocompatibilidade/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Tolerância a Antígenos Próprios/imunologia , Especificidade do Receptor de Antígeno de Linfócitos T/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Timo/fisiologia , Animais , Antígenos CD/metabolismo , Antígenos CD8/imunologia , Moléculas de Adesão Celular/metabolismo , Ligantes , Antígeno-1 Associado à Função Linfocitária/metabolismo , Complexo Principal de Histocompatibilidade/genética , Camundongos , Camundongos Knockout , Ligação Proteica , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores Virais/imunologia
14.
Nat Commun ; 10(1): 1019, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30833553

RESUMO

The αß T cell receptor (TCR) repertoire on mature T cells is selected in the thymus, but the basis for thymic selection of MHC-restricted TCRs from a randomly generated pre-selection repertoire is not known. Here we perform comparative repertoire sequence analyses of pre-selection and post-selection TCR from multiple MHC-sufficient and MHC-deficient mouse strains, and find that MHC-restricted and MHC-independent TCRs are primarily distinguished by features in their non-germline CDR3 regions, with many pre-selection CDR3 sequences not compatible with MHC-binding. Thymic selection of MHC-independent TCR is largely unconstrained, but the selection of MHC-specific TCR is restricted by both CDR3 length and specific amino acid usage. MHC-restriction disfavors TCR with CDR3 longer than 13 amino acids, limits positively charged and hydrophobic amino acids in CDR3ß, and clonally deletes TCRs with cysteines in their CDR3 peptide-binding regions. Together, these MHC-imposed structural constraints form the basis to shape VDJ recombination sequences into MHC-restricted repertoires.


Assuntos
Regiões Determinantes de Complementaridade/química , Regiões Determinantes de Complementaridade/imunologia , Complexo Principal de Histocompatibilidade/imunologia , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/imunologia , Timo/imunologia , Sequência de Aminoácidos , Animais , Regiões Determinantes de Complementaridade/genética , Ativação Linfocitária , Complexo Principal de Histocompatibilidade/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Antígenos de Linfócitos T/genética , Análise de Sequência de Proteína , Linfócitos T/imunologia , Linfócitos T/metabolismo , Recombinação V(D)J
15.
Neuron ; 104(4): 665-679.e8, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31585809

RESUMO

In humans, disruption of nonsense-mediated decay (NMD) has been associated with neurodevelopmental disorders (NDDs) such as autism spectrum disorder and intellectual disability. However, the mechanism by which deficient NMD leads to neurodevelopmental dysfunction remains unknown, preventing development of targeted therapies. Here we identified novel protein-coding UPF2 (UP-Frameshift 2) variants in humans with NDD, including speech and language deficits. In parallel, we found that mice lacking Upf2 in the forebrain (Upf2 fb-KO mice) show impaired NMD, memory deficits, abnormal long-term potentiation (LTP), and social and communication deficits. Surprisingly, Upf2 fb-KO mice exhibit elevated expression of immune genes and brain inflammation. More importantly, treatment with two FDA-approved anti-inflammatory drugs reduced brain inflammation, restored LTP and long-term memory, and reversed social and communication deficits. Collectively, our findings indicate that impaired UPF2-dependent NMD leads to neurodevelopmental dysfunction and suggest that anti-inflammatory agents may prove effective for treatment of disorders with impaired NMD.


Assuntos
Aprendizagem/fisiologia , Memória/fisiologia , Degradação do RNAm Mediada por Códon sem Sentido/fisiologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/imunologia , Animais , Criança , Drosophila , Feminino , Humanos , Transtornos do Desenvolvimento da Linguagem/genética , Masculino , Camundongos , Camundongos Knockout , Proteínas de Ligação a RNA/metabolismo
16.
Int Rev Immunol ; 34(5): 382-402, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25699578

RESUMO

Macroautophagy, hereafter, referred to as autophagy, has long been regarded as a housekeeping pathway involved in intracellular degradation and energy recycling. These housekeeping and homeostatic functions are especially important during cellular stress, such as periods of nutrient deprivation. However, importance of autophagy extends far beyond its degradative functions. Recent evidence shows that autophagy plays an essential role in development, organization and functions of the immune system, and defects in autophagy lead to several diseases, including cancer and autoimmunity. In the immune system, autophagy is important in regulation of the innate and adaptive immune responses. This review focuses on the roles of autophagy in the adaptive immune system. We first introduce the autophagy pathway and provide a brief description of the major molecular players involved in autophagy. We then discuss the importance of autophagy as a stress integrator mechanism and provide relevant examples of this role of autophagy in adaptive immune cells. Then we proceed to describe how autophagy regulates development, activation and functions of different adaptive immune cells. In these contexts, we mention both degradative and non-degradative roles of autophagy, and illustrate their importance. We also discuss role of autophagy in antigen presenting cells, which play critical roles in the activation of adaptive immune cells. Further, we describe how autophagy regulates functions of different adaptive immune cells during infection, inflammation and autoimmunity.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Autofagia/imunologia , Homeostase/imunologia , Sistema Imunitário/imunologia , Estresse Fisiológico/imunologia , Imunidade Adaptativa/imunologia , Doenças Autoimunes/imunologia , Humanos , Imunidade Inata/imunologia , Inflamação/imunologia , Neoplasias/imunologia
17.
Cell Rep ; 12(11): 1731-9, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26344765

RESUMO

Autophagy, an intracellular degradation and energy recycling mechanism, is emerging as an important regulator of immune responses. However, the role of autophagy in regulating neutrophil functions is not known. We investigated neutrophil biology using myeloid-specific autophagy-deficient mice and found that autophagy deficiency reduced neutrophil degranulation in vitro and in vivo. Mice with autophagy deficiency showed reduced severity of several neutrophil-mediated inflammatory and autoimmune disease models, including PMA-induced ear inflammation, LPS-induced breakdown of blood-brain barrier, and experimental autoimmune encephalomyelitis. NADPH oxidase-mediated reactive oxygen species generation was also reduced in autophagy-deficient neutrophils, and inhibition of NADPH oxidase reduced neutrophil degranulation, suggesting NADPH oxidase to be a player at the intersection of autophagy and degranulation. Overall, this study establishes autophagy as an important regulator of neutrophil functions and neutrophil-mediated inflammation in vivo.


Assuntos
Autofagia/fisiologia , Inflamação/metabolismo , Inflamação/patologia , Neutrófilos/metabolismo , Neutrófilos/patologia , Animais , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo
18.
Cancer Res ; 74(7): 1996-2005, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24691995

RESUMO

Lymphangioleiomyomatosis (LAM) is a progressive cystic lung disease affecting some women with tuberous sclerosis complex (TSC). Sporadic LAM can develop in women without TSC, owing to somatic mutations in the TSC2 gene. Accumulating evidence supports the view of LAM as a low-grade, destructive, metastasizing neoplasm. The mechanisms underlying the metastatic capability of LAM cells remain poorly understood. The observed behavior of LAM cells with respect to their infiltrative growth pattern, metastatic potential, and altered cell differentiation bears similarity to cells undergoing epithelial-mesenchymal transition. Here, we report increased levels of active Src kinase in LAM lungs and in TSC2(-/-) cells, caused by a reduction of autophagy. Furthermore, increased Src kinase activation promoted migration, invasion, and inhibition of E-cadherin expression in TSC2(-/-) cells by upregulating the transcription factor Snail. Notably, Src kinase inhibitors reduced migration and invasion properties of TSC2(-/-) cells and attenuated lung colonization of intravenously injected TSC2(-/-) cells in vivo to a greater extent than control TSC2(+/+) cells. Our results reveal mechanistic basis for the pathogenicity of LAM cells and they rationalize Src kinase as a novel therapeutic target for treatment of LAM and TSC.


Assuntos
Linfangioleiomiomatose/etiologia , Quinases da Família src/fisiologia , Animais , Autofagia , Movimento Celular , Células Cultivadas , Ativação Enzimática , Transição Epitelial-Mesenquimal , Feminino , Linfangioleiomiomatose/enzimologia , Linfangioleiomiomatose/patologia , Linfangioleiomiomatose/terapia , Camundongos , Camundongos SCID , Invasividade Neoplásica , Ratos , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/fisiologia , Quinases da Família src/antagonistas & inibidores
19.
Parkinsonism Relat Disord ; 20(1): 75-81, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24094725

RESUMO

Wilson disease (WD) is caused by defects in ATP7B gene due to impairment of normal function of the copper transporting P-type ATPase. This study describes a comprehensive genetic analysis of 199 Indian WD patients including mutations detected in our previous studies, undertakes functional assessment of the nucleotide variants in ATP7B promoter and correlates genotype with disease phenotype. The patient cohort harbors a total of 10 common and 48 rare mutations in the coding region of ATP7B including 21 novel changes. The common mutations represent 74% of characterized coding mutant alleles with p.C271X (63/260) and p.G1101R (7/31) being the most prevalent in eastern and western Indian patients, respectively. The mutation spectrum between east and west is mostly different with only three mutations (p.G1061E, p.N1270S and p.A1049A-fs) being shared between both the groups. Eight novel and 10 reported variants have been detected in the promoter and non-coding regions (5' and 3'UTRs) of ATP7B. Promoter reporter assay demonstrated that 3 novel variants and 5 reported polymorphisms alter the gene expression to a considerable extent; hence might play important role in ATP7B gene regulation. We devised the neurological involvement score to capture the spectrum of neurological involvement in WD patients. By utilizing the age at onset, neurological involvement score and ATP7B mutation background, we generated a genotype-phenotype matrix that could be effectively used to depict the phenotypic spectra of WD affected individuals and serve as a platform to identify prospective "outliers" to be investigated for their remarkable phenotypic divergence.


Assuntos
Adenosina Trifosfatases/genética , Proteínas de Transporte de Cátions/genética , Degeneração Hepatolenticular/genética , Adolescente , Criança , ATPases Transportadoras de Cobre , Análise Mutacional de DNA , Feminino , Estudos de Associação Genética , Humanos , Índia , Masculino , Mutação , Reação em Cadeia da Polimerase , Adulto Jovem
20.
Front Immunol ; 4: 88, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23596443

RESUMO

Autophagy, initially viewed as a conserved bulk-degradation mechanism, has emerged as a central player in a multitude of immune functions. Autophagy is important in host defense against intracellular and extracellular pathogens, metabolic syndromes, immune cell homeostasis, antigen processing and presentation, and maintenance of tolerance. The observation that the above processes are implicated in triggering or exacerbating autoimmunity raises the possibility that autophagy is involved in mediating autoimmune processes, either directly or as a consequence of innate or adaptive functions mediated by the pathway. Genome-wide association studies have shown association between single nucleotide polymorphisms (SNPs) in autophagy related gene 5 (Atg5), and Atg16l1 with susceptibility to systemic lupus erythematosus (SLE) and Crohn's disease, respectively. Enhanced expression of Atg5 was also reported in blood of mice with experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis (MS), and in T cells isolated from blood or brain tissues from patients with active relapse of MS. This review explores the roles of autophagy pathway in the innate and adaptive immune systems on regulating or mediating the onset, progression, or exacerbation of autoimmune processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA