Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biol Reprod ; 105(2): 403-412, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-33855343

RESUMO

Recent evidence indicates that niclosamide is an anti-cancer compound that is able to inhibit several signaling pathways. Although niclosamide has previously been identified by high-throughput screening platforms as a potential effective compound against several cancer types, no direct binding interactions with distinct biological molecule(s) has been established. The present study identifies key signal transduction mechanisms altered by niclosamide in ovarian cancer. Using affinity purification with a biotin-modified niclosamide derivative and mass spectrometry analysis, several RNA-binding proteins (RBPs) were identified. We chose the two RBPs, FXR1 and IGF2BP2, for further analysis. A significant correlation exists in which high-expression of FXR1 or IGF2BP2 is associated with reduced survival of ovarian cancer patients. Knockdown of FXR1 or IGF2BP2 in ovarian cancer cells resulted in significantly reduced cell viability, adhesion, and migration. Furthermore, FXR1 or IGF2BP2 deficient ovarian cancer cells exhibited reduced response to most doses of niclosamide showing greater cell viability than those with intact RBPs. These results suggest that FXR1 and IGF2BP2 are direct targets of niclosamide and could have critical activities that drive multiple oncogenic pathways in ovarian cancer.


Assuntos
Antineoplásicos/farmacologia , Niclosamida/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Proteínas de Ligação a RNA/genética , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos
2.
J Am Chem Soc ; 139(16): 5801-5807, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28371580

RESUMO

We report a nontraditional synthesis of cyclopentafused-polycyclic aromatic hydrocarbon embedded ladder polymers using a palladium catalyzed cyclopentannulation polymerization followed by a cyclodehydrogenation reaction. Donor-acceptor type polymers containing a cyclopenta[hi]aceanthrylene acceptor groups can be synthesized by a palladium catalyzed copolymerization between 9,10-dibromoanthracene and a variety of bis(arylethynyl)arenes to give polymers with molecular weights (Mn) of 9-22 kDa. The bis(arylethynyl)arenes were composed of benzene, thiophene, or thieno[3,2-b]thiophene moieties, which provided access to a series of four donor-acceptor copolymers. The polymers were subjected to cyclodehydrogenation with FeCl3 to access rigid ladder type polymers with the conversion investigated by 13C NMR of isotopically labeled polymers. The ladder polymers possess broad UV-Vis absorptions and narrow optical band gaps of 1.17-1.29 eV and are p-type semiconductors in organic field effect transistors.

3.
Angew Chem Int Ed Engl ; 54(52): 15762-6, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26768696

RESUMO

A new class of stabilized pentacene derivatives with externally fused five-membered rings are prepared by means of a key palladium-catalyzed cyclopentannulation step. The target compounds are synthesized by chemical manipulation of a partially saturated 6,13-dibromopentacene precursor that can be fully aromatized in a final step through a DDQ-mediated dehydrogenation reaction (DDQ=2,3-dichloro-5,6-dicyano-1,4-benzoquinone). The new 1,2,8,9-tetraaryldicyclopenta[fg,qr]pentacene derivatives have narrow energy gaps of circa 1.2 eV and behave as strong electron acceptors with lowest unoccupied molecular orbital energies between -3.81 and -3.90 eV. Photodegradation studies reveal the new compounds are more photostable than 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene).

4.
ACS Appl Mater Interfaces ; 14(25): 28834-28841, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35709493

RESUMO

Redoxmers or redox-active organic materials, are one critical component for nonaqueous redox flow batteries (RFBs), which hold high promise in enabling the time domain of the grid. While tuning redox potentials of redoxmers is a very effective way to enhance energy densities of NRFBs, those improvements often accompany accelerated kinetics of the charged species, undermining stability and cycling performance. Herein, a strategy for designing redoxmers with simultaneous improvements in redox potential and stability is proposed. Specifically, the redoxmer 1,4-di-tert-butyl-2,5-bis(2,2,2-trifluoroethoxy)benzene (ANL-C46) is developed by incorporating fluorinated substitutions into the dialkoxybenzene-based platform. Compared to the non-fluorinated analogue, ANL-C46 demonstrates not only an increased (∼0.41 V) redox potential but also much enhanced stability (1.6 times) and cyclability (4 times) evidenced by electron paramagnetic resonance kinetic study, H-cell and flow cell cycling. In fact, the cycling performance of ANL-C46 is among the best of high potential (>1.0 V vs Ag/Ag+) redoxmers ever reported. Density functional theory calculations suggest that while the introduced fluorine substitutions elevate the redox potentials, they also help to depress the decomposition reactions of the charged redoxmers, affording excellent stability. The findings represent an interesting strategy for simultaneously improving energy density and stability, which could further prompt the development of high-performance redoxmers.

5.
J Phys Chem B ; 124(46): 10409-10418, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33158362

RESUMO

Redoxmers are organic molecules that carry electric charge in flow batteries. In many instances, they consist of heteroaromatic moieties modified with appended groups to prevent stacking of the planar cores and increase solubility in liquid electrolytes. This higher solubility is desired as it potentially allows achieving greater energy density in the battery. However, the present synthetic strategies often yield bulky molecules with low molarity even when they are neat and still lower molarity in liquid solutions. Fortunately, there are exceptions to this rule. Here, we examine one well-studied redoxmer, 2,1,3-benzothiadiazole, which has solubility ∼5.7 M in acetonitrile at 25 °C. We show computationally and prove experimentally that the competition between two packing motifs, face-to-face π-stacking and random N-H bond piling, introduces frustration that confounds nucleation in crowded solutions. Our findings and examples from related systems suggest a complementary strategy for the molecular design of redoxmers for high energy density redox flow cells.

6.
J Phys Chem B ; 124(45): 10226-10236, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33119315

RESUMO

Redoxmers are electrochemically active organic molecules storing charge and energy in electrolyte fluids circulating through redox flow batteries (RFBs). Such molecules typically have solvent-repelling cores and solvent-attracting pendant groups introduced to increase solubility in liquid electrolytes. These two features can facilitate nanoscale aggregation of the redoxmer molecules in crowded solutions. In some cases, this aggregation leads to the emergence of continuous networks of solute molecules in contact, and the solution becomes microscopically heterogeneous. Here, we use small-angle X-ray scattering (SAXS) and molecular dynamics modeling to demonstrate formation of such networks and examine structural factors controlling this self-assembly. We also show that salt ions become excluded from these solute aggregates into small pockets of electrolytes, where these ions strongly associate. This confinement by exclusion is also likely to occur to charged redoxmer molecules in a "sea" of neutral precursors coexisting in the same solution. Here, we demonstrate that the decay lifetime of the confined charged molecules in such solutions can increase several fold compared to dilute solutions. We attribute this behavior to a "microreactor effect" on reverse reactions of the confined species during their decomposition.

7.
Chem Commun (Camb) ; 54(100): 14140-14143, 2018 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-30500004

RESUMO

Isomerically pure 5,11-dibromo-2,8-dihexylanthra[2,3-b:76-b']dithiophene, a brominated analog of anthracenedithiophene (ADT), was prepared and utilized for a palladium catalyzed cyclopentannulation reaction with 3,3'-dimethoxy-phenylacetylene to give cyclopentannulated ADT (CP-ADTs). A further Scholl cyclodehydrogenation reaction gave contorted aromatics with large splay angles, low optical gaps, and low LUMOs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA