Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(17): 10053-10077, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36018804

RESUMO

Eukaryotic ribosome synthesis involves more than 200 assembly factors, which promote ribosomal RNA (rRNA) processing, modification and folding, and assembly of ribosomal proteins. The formation and maturation of the earliest pre-60S particles requires structural remodeling by the Npa1 complex, but is otherwise still poorly understood. Here, we introduce Rbp95 (Ycr016w), a constituent of early pre-60S particles, as a novel ribosome assembly factor. We show that Rbp95 is both genetically and physically linked to most Npa1 complex members and to ribosomal protein Rpl3. We demonstrate that Rbp95 is an RNA-binding protein containing two independent RNA-interacting domains. In vivo, Rbp95 associates with helix H95 in the 3' region of the 25S rRNA, in close proximity to the binding sites of Npa1 and Rpl3. Additionally, Rbp95 interacts with several snoRNAs. The absence of Rbp95 results in alterations in the protein composition of early pre-60S particles. Moreover, combined mutation of Rbp95 and Npa1 complex members leads to a delay in the maturation of early pre-60S particles. We propose that Rbp95 acts together with the Npa1 complex during early pre-60S maturation, potentially by promoting pre-rRNA folding events within pre-60S particles.


Assuntos
Proteínas Nucleares/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos , Proteínas de Saccharomyces cerevisiae/metabolismo , Precursores de RNA/metabolismo , RNA Ribossômico/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Saccharomyces cerevisiae/genética
2.
Front Microbiol ; 8: 1965, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29089929

RESUMO

Enzymes containing the FIC (filamentation induced by cyclic AMP) domain catalyze post-translational modifications of target proteins. In bacteria the activity of some Fic proteins resembles classical toxin-antitoxin (TA) systems. An excess of toxin over neutralizing antitoxin can enable bacteria to survive some stress conditions by slowing metabolic processes and promoting dormancy. The cell can return to normal growth when sufficient antitoxin is present to block toxin activity. Fic genes of the human and animal pathogen Campylobacter fetus are significantly associated with just one subspecies, which is specifically adapted to the urogenital tract. Here, we demonstrate that the fic genes of virulent isolate C. fetus subsp. venerealis 84-112 form multiple TA systems. Expression of the toxins in Escherichia coli caused filamentation and growth inhibition phenotypes reversible by concomitant antitoxin expression. Key active site residues involved in adenylylation by Fic proteins are conserved in Fic1, Fic3 and Fic4, but degenerated in Fic2. We show that both Fic3 and the non-canonical Fic2 disrupt assembly and function of E. coli ribosomes when expressed independently of a trans-acting antitoxin. Toxicity of the Fic proteins is controlled by different mechanisms. The first involves intramolecular regulation by an inhibitory helix typical for Fic proteins. The second is an unusual neutralization by heterologous Fic-Fic protein interactions. Moreover, a small interacting antitoxin called Fic inhibitory protein 3, which appears unrelated to known Fic antitoxins, has the novel capacity to bind and neutralize Fic toxins encoded in cis and at distant sites. These findings reveal a remarkable system of functional crosstalk occurring between Fic proteins expressed from chromosomal and extrachromosomal modules. Conservation of fic genes in other bacteria that either inhabit or establish pathology in the urogenital tract of humans and animals underscores the significance of these factors for niche-specific adaptation and virulence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA