Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Biol Chem ; 295(3): 717-728, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31819005

RESUMO

Cellular membranes contain many lipids, some of which, such as sphingolipids, have important structural and signaling functions. The common sphingolipid glucosylceramide (GlcCer) is present in plants, fungi, and animals. As a major plant sphingolipid, GlcCer is involved in the formation of lipid microdomains, and the regulation of GlcCer is key for acclimation to stress. Although the GlcCer biosynthetic pathway has been elucidated, little is known about GlcCer catabolism, and a plant GlcCer-degrading enzyme (glucosylceramidase (GCD)) has yet to be identified. Here, we identified AtGCD3, one of four Arabidopsis thaliana homologs of human nonlysosomal glucosylceramidase, as a plant GCD. We found that recombinant AtGCD3 has a low Km for the fluorescent lipid C6-NBD GlcCer and preferentially hydrolyzes long acyl-chain GlcCer purified from Arabidopsis leaves. Testing of inhibitors of mammalian glucosylceramidases revealed that a specific inhibitor of human ß-glucosidase 2, N-butyldeoxynojirimycin, inhibits AtGCD3 more effectively than does a specific inhibitor of human ß-glucosidase 1, conduritol ß-epoxide. We also found that Glu-499 and Asp-647 in AtGCD3 are vital for GCD activity. GFP-AtGCD3 fusion proteins mainly localized to the plasma membrane or the endoplasmic reticulum membrane. No obvious growth defects or changes in sphingolipid contents were observed in gcd3 mutants. Our results indicate that AtGCD3 is a plant glucosylceramidase that participates in GlcCer catabolism by preferentially hydrolyzing long-acyl-chain GlcCers.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Glucosilceramidase/genética , Glucosilceramidas/metabolismo , Proteínas Associadas aos Microtúbulos/genética , 1-Desoxinojirimicina/análogos & derivados , 1-Desoxinojirimicina/farmacologia , Animais , Arabidopsis/metabolismo , Proteínas de Arabidopsis/antagonistas & inibidores , Proteínas de Arabidopsis/química , Vias Biossintéticas/efeitos dos fármacos , Glucosilceramidase/antagonistas & inibidores , Glucosilceramidase/química , Glucosilceramidas/genética , Humanos , Metabolismo/efeitos dos fármacos , Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Proteínas Associadas aos Microtúbulos/química , Folhas de Planta/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Transdução de Sinais/efeitos dos fármacos , Esfingolipídeos/metabolismo
2.
Plant Cell ; 26(8): 3449-67, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25149397

RESUMO

Arabidopsis thaliana plants that lack ceramide kinase, encoded by ACCELERATED CELL DEATH5 (ACD5), display spontaneous programmed cell death late in development and accumulate substrates of ACD5. Here, we compared ceramide accumulation kinetics, defense responses, ultrastructural features, and sites of reactive oxygen species (ROS) production in wild-type and acd5 plants during development and/or Botrytis cinerea infection. Quantitative sphingolipid profiling indicated that ceramide accumulation in acd5 paralleled the appearance of spontaneous cell death, and it was accompanied by autophagy and mitochondrial ROS accumulation. Plants lacking ACD5 differed significantly from the wild type in their responses to B. cinerea, showing earlier and higher increases in ceramides, greater disease, smaller cell wall appositions (papillae), reduced callose deposition and apoplastic ROS, and increased mitochondrial ROS. Together, these data show that ceramide kinase greatly affects sphingolipid metabolism and the site of ROS accumulation during development and infection, which likely explains the developmental and infection-related cell death phenotypes. The acd5 plants also showed an early defect in restricting B. cinerea germination and growth, which occurred prior to the onset of cell death. This early defect in B. cinerea restriction in acd5 points to a role for ceramide phosphate and/or the balance of ceramides in mediating early antifungal responses that are independent of cell death.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Ceramidas/biossíntese , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/fisiologia , Apoptose/genética , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Autofagia , Botrytis/imunologia , Botrytis/fisiologia , Cinética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Espécies Reativas de Oxigênio/metabolismo
3.
Plant J ; 81(5): 767-80, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25619405

RESUMO

Ceramidases hydrolyze ceramide into sphingosine and fatty acids. In mammals, ceramidases function as key regulators of sphingolipid homeostasis, but little is known about their roles in plants. Here we characterize the Arabidopsis ceramidase AtACER, a homolog of human alkaline ceramidases. The acer-1 T-DNA insertion mutant has pleiotropic phenotypes, including reduction of leaf size, dwarfing and an irregular wax layer, compared with wild-type plants. Quantitative sphingolipid profiling showed that acer-1 mutants and the artificial microRNA-mediated silenced line amiR-ACER-1 have high ceramide levels and decreased long chain bases. AtACER localizes predominantly to the endoplasmic reticulum, and partially to the Golgi complex. Furthermore, we found that acer-1 mutants and AtACER RNAi lines showed increased sensitivity to salt stress, and lines overexpressing AtACER showed increased tolerance to salt stress. Reduction of AtACER also increased plant susceptibility to Pseudomonas syringae. Our data highlight the key biological functions of ceramidases in biotic and abiotic stresses in plants.


Assuntos
Arabidopsis/enzimologia , Ceramidases/metabolismo , Resistência à Doença , Doenças das Plantas/imunologia , Pseudomonas syringae/fisiologia , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ceramidases/genética , Ceramidas/metabolismo , Retículo Endoplasmático/enzimologia , Complexo de Golgi/enzimologia , Mutação , Fenótipo , Doenças das Plantas/microbiologia , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/imunologia , Raízes de Plantas/fisiologia , Estômatos de Plantas/enzimologia , Estômatos de Plantas/genética , Estômatos de Plantas/imunologia , Estômatos de Plantas/fisiologia , Plantas Geneticamente Modificadas , Tolerância ao Sal , Plântula/enzimologia , Plântula/genética , Plântula/imunologia , Plântula/fisiologia , Esfingolipídeos/metabolismo , Esfingosina/metabolismo , Estresse Fisiológico
4.
Mol Plant Microbe Interact ; 28(2): 154-66, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25317668

RESUMO

Gene expression regulation by pH in filamentous fungi and yeasts is controlled by the PACC/RIM101 transcription factor. In Colletotrichum gloeosporioides, PACC is known to act as positive regulator of alkaline-expressed genes, and this regulation was shown to contribute to fungal pathogenicity. PACC is also a negative regulator of acid-expressed genes, however; the mechanism of downregulation of acid-expressed genes by PACC and their contribution to C. gloeosporioides pathogenicity is not well understood. RNA sequencing data analysis was employed to demonstrate that PACC transcription factor binding sites (TFBS) are significantly overrepresented in the promoter of PACC-upregulated, alkaline-expressed genes. In contrast, they are not overrepresented in the PACC-downregulated, acid-expressed genes. Instead, acid-expressed genes showed overrepresentation of AREB GATA TFBS in C. gloeosporioides and in homologs of five other ascomycetes genomes. The areB promoter contains PACC TFBS; its transcript was upregulated at pH 7 and repressed in ΔpacC. Furthermore, acid-expressed genes were found to be constitutively upregulated in ΔareB during alkalizing conditions. The areB mutants showed significantly reduced ammonia secretion and pathogenicity on tomato fruit. Present results indicate that PACC activates areB expression, thereby conditionally repressing acid-expressed genes and contributing critically to C. gloeosporioides pathogenicity.


Assuntos
Colletotrichum/patogenicidade , Frutas/microbiologia , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/fisiologia , Solanum lycopersicum/microbiologia , Sequência de Aminoácidos , Colletotrichum/metabolismo , Proteínas Fúngicas/genética , Dados de Sequência Molecular , Doenças das Plantas/microbiologia , RNA Fúngico/genética , RNA Fúngico/metabolismo , Virulência
5.
Front Plant Sci ; 11: 145, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32161611

RESUMO

Ceramide sphingolipids are major components of membranes. C2 and C6 ceramides induce programmed cell death (PCD) in animals and plants, and we previously showed that C2 and C6 ceramides induce PCD in rice (Oryza sativa) protoplasts. However, the mechanistic link between sphingolipids and PCD in rice remains unclear. Here, we observed that calcium levels increased rapidly after ceramide treatment. Moreover, the calcium channel inhibitor LaCl3 and the intracellular calcium chelator acetoxymethyl-1, 2-bis (2-aminophenoxy) ethic acid (BAPTA-AM) inhibited this calcium increase and prevented ceramide-induced PCD. Moreover, caspase-3-like protease activity increased significantly in C6 ceramide-treated protoplasts, and a caspase-specific inhibitor prevented C6 ceramide-induced cell death. We also detected the other typical PCD events including ATP loss. DIDS (4, 49-diisothiocyanatostilbene- 2, 29-disulfonic acid), an inhibitor of voltage-dependent anion channels (VDACs), decreased C6 ceramide-induced cell death. Together, this evidence suggests that mitochondria played an important role in C6 ceramide-induced PCD.

6.
Front Plant Sci ; 11: 600704, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33488646

RESUMO

Anthocyanins spatiotemporally accumulate in certain tissues of particular species in the banana plant, and MYB transcription factors (TFs) serve as their primary regulators. However, the precise regulatory mechanism in banana remains to be determined. Here, we report the identification and characterization of MaMYB4, an R2R3-MYB repressor TF, characterized by the presence of EAR (ethylene-responsive element binding factor-associated amphiphilic repression) and TLLLFR motifs. MaMYB4 expression was induced by the accumulation of anthocyanins. Transgenic banana plants overexpressing MaMYB4 displayed a significant reduction in anthocyanin compared to wild type. Consistent with the above results, metabolome results showed that there was a decrease in all three identified cyanidins and one delphinidin, the main anthocyanins that determine the color of banana leaves, whereas both transcriptome and reverse transcription-quantitative polymerase chain reaction analysis showed that many key anthocyanin synthesis structural genes and TF regulators were downregulated in MaMYB4 overexpressors. Furthermore, dual-luciferase assays showed that MaMYB4 was able to bind to the CHS, ANS, DFR, and bHLH promoters, leading to inhibition of their expression. Yeast two-hybrid analysis verified that MaMYB4 did not interact with bHLH, which ruled out the possibility that MaMYB4 could be incorporated into the MYB-bHLH-WD40 complex. Our results indicated that MaMYB4 acts as a repressor of anthocyanin biosynthesis in banana, likely due to a two-level repression mechanism that consists of reduced expression of anthocyanin synthesis structural genes and the parallel downregulation of bHLH to interfere with the proper assembly of the MYB-bHLH-WD40 activation complex. To the best of our knowledge, this is the first MYB TF that regulates anthocyanin synthesis that was identified by genetic methods in bananas, which will be helpful for manipulating anthocyanin coloration in banana programs in the future.

7.
Front Plant Sci ; 9: 282, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29568304

RESUMO

Banana is an important tropical fruit with high economic value. One of the main cultivars ('Cavendish') is susceptible to low temperatures, while another closely related specie ('Dajiao') has considerably higher cold tolerance. We previously reported that some membrane proteins appear to be involved in the cold tolerance of Dajiao bananas via an antioxidation mechanism. To investigate the early cold stress response of Dajiao, here we applied comparative membrane proteomics analysis for both cold-sensitive Cavendish and cold-tolerant Dajiao bananas subjected to cold stress at 10°C for 0, 3, and 6 h. A total of 2,333 and 1,834 proteins were identified in Cavendish and Dajiao, respectively. Subsequent bioinformatics analyses showed that 692 Cavendish proteins and 524 Dajiao proteins were predicted to be membrane proteins, of which 82 and 137 differentially abundant membrane proteins (DAMPs) were found in Cavendish and Dajiao, respectively. Interestingly, the number of DAMPs with increased abundance following 3 h of cold treatment in Dajiao (80) was seven times more than that in Cavendish (11). Gene ontology molecular function analysis of DAMPs for Cavendish and Dajiao indicated that they belong to eight categories including hydrolase activity, binding, transporter activity, antioxidant activity, etc., but the number in Dajiao is twice that in Cavendish. Strikingly, we found peroxidases (PODs) and aquaporins among the protein groups whose abundance was significantly increased after 3 h of cold treatment in Dajiao. Some of the PODs and aquaporins were verified by reverse-transcription PCR, multiple reaction monitoring, and green fluorescent protein-based subcellular localization analysis, demonstrating that the global membrane proteomics data are reliable. By combining the physiological and biochemical data, we found that membrane-bound Peroxidase 52 and Peroxidase P7, and aquaporins (MaPIP1;1, MaPIP1;2, MaPIP2;4, MaPIP2;6, MaTIP1;3) are mainly involved in decreased lipid peroxidation and maintaining leaf cell water potential, which appear to be the key cellular adaptations contributing to the cold tolerance of Dajiao. This membrane proteomics study provides new insights into cold stress tolerance mechanisms of banana, toward potential applications for ultimate genetic improvement of cold tolerance in banana.

8.
Front Plant Sci ; 6: 460, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26150824

RESUMO

Ceramidases hydrolyze ceramide into sphingosine and fatty acids and, although ceramidases function as key regulators of sphingolipid homeostasis in mammals, their roles in plants remain largely unknown. Here, we characterized the Arabidopsis thaliana ceramidase AtNCER1, a homolog of human neutral ceramidase. AtNCER1 localizes predominantly on the endoplasmic reticulum. The ncer1 T-DNA insertion mutants had no visible phenotype, but accumulated hydroxyceramides, and showed increased sensitivity to oxidative stress induced by methyl viologen. Plants over-expressing AtNCER1 showed increased tolerance to oxidative stress. These data indicate that the Arabidopsis neutral ceramidase affects sphingolipid homeostasis and oxidative stress responses.

9.
PLoS One ; 6(3): e18079, 2011 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-21483860

RESUMO

BACKGROUND: Ceramide kinase (CERK) is a key regulator of cell survival in dicotyledonous plants and animals. Much less is known about the roles of CERK and ceramides in mediating cellular processes in monocot plants. Here, we report the characterization of a ceramide kinase, OsCERK, from rice (Oryza sativa spp. Japonica cv. Nipponbare) and investigate the effects of ceramides on rice cell viability. PRINCIPAL FINDINGS: OsCERK can complement the Arabidopsis CERK mutant acd5. Recombinant OsCERK has ceramide kinase activity with Michaelis-Menten kinetics and optimal activity at 7.0 pH and 40°C. Mg2+ activates OsCERK in a concentration-dependent manner. Importantly, a CXXXCXXC motif, conserved in all ceramide kinases and important for the activity of the human enzyme, is critical for OsCERK enzyme activity and in planta function. In a rice protoplast system, inhibition of CERK leads to cell death and the ratio of added ceramide and ceramide-1-phosphate, CERK's substrate and product, respectively, influences cell survival. Ceramide-induced rice cell death has apoptotic features and is an active process that requires both de novo protein synthesis and phosphorylation, respectively. Finally, mitochondria membrane potential loss previously associated with ceramide-induced cell death in Arabidopsis was also found in rice, but it occurred with different timing. CONCLUSIONS: OsCERK is a bona fide ceramide kinase with a functionally and evolutionarily conserved Cys-rich motif that plays an important role in modulating cell fate in plants. The vital function of the conserved motif in both human and rice CERKs suggests that the biochemical mechanism of CERKs is similar in animals and plants. Furthermore, ceramides induce cell death with similar features in monocot and dicot plants.


Assuntos
Cisteína/química , Cisteína/metabolismo , Oryza/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Motivos de Aminoácidos/genética , Motivos de Aminoácidos/fisiologia , Cisteína/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteínas de Plantas/genética , Relação Estrutura-Atividade
10.
Am J Bot ; 97(10): 1602-9, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21616795

RESUMO

PREMISE OF THE STUDY: Single-walled carbon nanotubes (SWCNTs) have many unique structural and mechanical properties. Their potential applications, especially in biomedical engineering and medical chemistry, have been increasing in recent years, but the toxicological impact of nanoparticles has rarely been studied in plants. • METHODS: We exposed Arabidopsis and rice leaf protoplasts to SWCNTs and examined cell viability, DNA damage, reactive oxygen species generation, and related gene expression. We also tested the effects of nanoparticles on Arabidopsis leaves after injecting a SWCNT solution. EM-TUNEL (electron-microscopic terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling) and a cerium chloride staining method were used. • KEY RESULTS: SWCNTs caused adverse cellular responses including cell aggregation, chromatin condensation along with a TUNEL-positive reaction, plasma membrane deposition, and H(2)O(2) accumulation. The effect of SWCNTs on the survival of cells was dose dependent, with 25 µg/mL inducing 25% cell death in 6 h. In contrast, activated carbon, which is not a nano-sized carbon particle, did not induce cell death even 24 h after treatments. The data indicated that the nano-size of the particle is a critical factor for toxicity. Moreover, endocytosis-like structures with cerium chloride deposits formed after SWCNT treatment, suggesting a possible pathway for nanoparticles to traverse the cell membrane. • CONCLUSIONS: Consequently, SWCNTs have an adverse effect on protoplasts and leaves through oxidative stress, leading to a certain amount of programmed cell death. Although nanomaterials have great advantages in many respects, the benefits and side effects still need to be assessed carefully.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA