Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Opt Express ; 28(16): 23306-23319, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32752329

RESUMO

The transverse resolution of optical coherence tomography is decreased by aberrations introduced from optical components and the tested samples. In this paper, an automated fast computational aberration correction method based on a stochastic parallel gradient descent (SPGD) algorithm is proposed for aberration-corrected imaging without adopting extra adaptive optics hardware components. A virtual phase filter constructed through combination of Zernike polynomials is adopted to eliminate the wavefront aberration, and their coefficients are stochastically estimated in parallel through the optimization of the image metrics. The feasibility of the proposed method is validated by a simulated resolution target image, in which the introduced aberration wavefront is estimated accurately and with fast convergence. The computation time for the aberration correction of a 512 × 512 pixel image from 7 terms to 12 terms requires little change, from 2.13 s to 2.35 s. The proposed method is then applied for samples with different scattering properties including a particle-based phantom, ex-vivo rabbit adipose tissue, and in-vivo human retina photoreceptors, respectively. Results indicate that diffraction-limited optical performance is recovered, and the maximum intensity increased nearly 3-fold for out-of-focus plane in particle-based tissue phantom. The SPGD algorithm shows great potential for aberration correction and improved run-time performance compared to our previous Resilient backpropagation (Rprop) algorithm when correcting for complex wavefront distortions. The fast computational aberration correction suggests that after further optimization our method can be integrated for future applications in real-time clinical imaging.

2.
J Opt Soc Am A Opt Image Sci Vis ; 36(6): 1072-1078, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31158139

RESUMO

The aberrated wavefront propagates along its normal. Both the magnitude and boundary change after the propagation. Wavefronts characterized by Zernike coefficients and a normalized pupil radius can also be represented by a bundle of feature rays normal to the local surface. A ray transfer matrix parameterized by the pupil radius and propagation distance is proposed to transfer these feature rays to obtain the slope and position data of the propagated feature rays. Numerical orthogonal Zernike gradient polynomials are derived to reconstruct the wavefront from the discrete data by using a numerical method. Two aberrated wavefronts are performed as examples to validate the accuracy and flexibility of the proposed numerical method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA