Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Langmuir ; 40(36): 19239-19250, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39189153

RESUMO

Supercapacitors with transition bimetallic oxides as pseudocapacitive materials have been of wide concern for their excellent energy storage performance. In this work, a simple coprecipitation method was used to synthesize the precursor, followed by calcination to prepare Ni-Cu bimetallic oxide materials. The structure, morphology and properties of the materials prepared by different precipitating agents and different calcination temperatures of NCO-H2C2O4 precursor were investigated. The optimum precipitant was determined to be H2C2O4, and Ni-Cu nanoparticles with regular lamellar microstructure were obtained at the calcination temperature of 400 °C. The nanostructure and morphology provide a large active channel for the rapid diffusion of electrolyte ions, and the specific capacitance of NCO-H2C2O4-400 electrode material can reach 740.31 F/g Cs at 1 A/g. The investigation of charge storage mechanism shows that the contribution rate of capacitance and diffusion control is about 37.9% and 67.2%, respectively. The electrochemical test results of the asymmetric supercapacitors (ASC) constructed with NCO-H2C2O4-400 and activated carbon show that the specific capacitance, energy density, and power density of the capacitor are 52.66 F/g, 16.45 Wh/kg, and 759.51 W/kg, respectively. Even after 5000 charge/discharge cycles at 5 A/g, it can still keep 90.57% of its initial capacity. This work not only provides competitive electrode materials for energy storage devices but also provides a feasible strategy for producing complex transition metal oxide materials with high capacitance performance.

2.
J Phys Chem A ; 125(41): 9180-9190, 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34636572

RESUMO

In order to obtain a deep insight into the N2O formation mechanism in a fluidized bed, density functional theory was used to investigate the interaction between char(N) and NO at a molecular level. Three key influencing factors for the formation of N2O, namely, active sites, nitrogen status, and oxygen molecules, were taken into study. The geometric structures, electron distribution characteristics, and reaction paths were optimized and calculated. The outer orbital electron properties of char(N) and NO indicate that NO acts as an oxidizer, which tends to abstract electrons from char(N) during the char(N)-NO interaction. A stable N2O molecule has a singlet state and presents as a linear molecular structure. The chemisorption on the char surface will weaken the bond energy of NO from 620 to 94.1 kJ/mole, which promotes the catalytic reduction of NO. Active sites on the char surface benefit the reduction of NO to N2, rather than N2O, which indicates that excessive high temperatures will inhibit the production of N2O. The combination of pyridine nitrogen and NO to form N2O needs to overcome a much higher energy barrier of 357.4 kJ/mole. The initial chemisorption of oxygen molecules on the char surface will promote the formation of N2O by lowering the dissociation energy of N2O from the char surface as well as exposing nitrogen to the char surface.

3.
Artigo em Inglês | MEDLINE | ID: mdl-26327207

RESUMO

This study aimed to compare and assess phthalate contamination in various indoor environments. In this study, 44 floor dust samples from different indoor environments in Delaware, USA were collected and analyzed for 14 phthalates using gas chromatography-mass spectrometry. Phthalates were detected in all dust samples with the total concentration ranging from 84 to 7117 mg kg(-1). DEHP (di-2-ethylhexyl phthalate), BzBP (benzylbutyl phthalate), DBP (dibutyl phthalate), and DiBP (di-isobutyl phthalate) were both the most frequently and abundantly detected phthalates. The average concentration of total phthalates in dust from offices, student dorms, gyms, stores, and daycare centers was found to be significantly or insignificantly (P = 0.05) higher than that in dust from houses and apartments. Plastic flooring materials and the application of floor care chemical products were positively associated with total phthalate concentration in floor dust. Toxicological risk assessment indicated that an investigated daycare center in this study was the only indoor environment that may cause the intake amount of DEHP of infants, toddlers, and children via dust ingestion to exceed the reference dose established by the U.S. Environmental Protection Agency (USEPA). Regular monitoring on phthalate contamination in sensitive indoor environments is recommended.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Poeira/análise , Exposição Ambiental/análise , Pisos e Cobertura de Pisos , Ácidos Ftálicos/toxicidade , Criança , Creches , Pré-Escolar , Delaware , Dibutilftalato/análogos & derivados , Dibutilftalato/análise , Dibutilftalato/toxicidade , Dietilexilftalato/análise , Dietilexilftalato/toxicidade , Relação Dose-Resposta a Droga , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Lactente , Masculino , Ácidos Ftálicos/análise , Plásticos/química , Reprodutibilidade dos Testes , Medição de Risco , Estados Unidos , United States Environmental Protection Agency/normas
4.
ACS Appl Mater Interfaces ; 16(36): 47646-47661, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39188174

RESUMO

The recycling of spent Li-ion batteries is urgent, and the effective recovery of valuable metals from spent cathode material is an economic and eco-friendly approach. In this study, Ni, Cu, Co, and Mn were extracted synchronously from spent LiNixCoyMn1-x-yO2 by chlorination and the complexation reaction of ammonium chloride at low temperatures. The kinetics of the chlorination process was investigated by nonisothermal thermal analysis to determine the rate equation of metal conversion, and the apparent activation energies were calculated to be 99.96 kJ·mol-1 for lithium and 146.70 kJ·mol-1 for nickel, cobalt, and manganese, respectively. The separation of valuable metals from polymetallic leaching solution and the regeneration of cathode materials were further investigated to promote the industrialization of the process. The recoveries of Ni, Co, Mn, and Li can reach 97.75, 99.99, 99.99, and 92.23%, respectively. The prepared LiNi0.8Co0.1Mn0.1O2 precursor is a multilayer spherical particle formed by stacking primary hexagonal nanosheets along the (010) crystal axis, the formation mechanism of which was discussed. The effect of temperature, time, and mixed lithium ratio on the performance of single crystal LiNi0.8Co0.1Mn0.1O2 cathode in the synthesis process was investigated to determine the optimum conditions. Compared with commercial materials, the prepared single crystal LiNi0.8Co0.1Mn0.1O2 cathode has a more regular crystal structure and higher initial discharge capacity (215.9 mAh·g-1 at 0.1 C).

5.
Mater Horiz ; 10(11): 4776-4826, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37771314

RESUMO

The new energy era has put forward higher requirements for lithium-ion batteries, and the cathode material plays a major role in the determination of electrochemical performance. Due to the advantages of low cost, environmental friendliness, and reversible capacity, high-nickel ternary materials are considered to be one of ideal candidates for power batteries now and in the future. At present, the main design idea of ternary materials is to fully consider the structural stability and safety performance of batteries while maintaining high energy density. Ternary materials currently face problems such as low lithium-ion diffusion rate and irreversible collapse of the structure, although the battery performance can be improved utilizing coating, ion doping, etc., the actual demand requires a more effective modification method based on the intrinsic properties of the material. Based on the summary of the current research status of the ternary material LiNi0.6Co0.2Mn0.2O2 (NCM622), a comparative study of the modification paths of the material was conducted from the level of molecular action mechanism. Finally, the major problems of ternary cathode materials and the future development direction are pointed out to stimulate more innovative insights and facilitate their practical applications.

6.
J Agric Food Chem ; 61(39): 9502-9, 2013 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-24016262

RESUMO

With the wide application of plastics, the contamination of plasticizers migrating from plastic materials in the environment is becoming ubiquitous. The presence of phthalates, the major group of plasticizers, in edible items has gained increasingly more concern due to their endocrine disrupting property. In this study, 15 plasticizers in 21 edible vegetable oils purchased from a U.S. retail market were analyzed using gas chromatograph-mass spectrometry. Di(2-ethylhexyl) phthalate (DEHP) and diisobutyl phthalate (DiBP) were detected in all oil samples. Benzylbutyl phthalate (BzBP), dibutyl phthalate (DBP), and diethyl phthalate (DEP) were detected at a rate of 95.2, 90.5, and 90.5%, respectively. The detection rates for all other plasticizers ranged from 0 to 57.1%. The content of total plasticizers in oil samples was determined to be 210-7558 µg/kg, which was comparable to the content range in oil marketed in Italy. Although no significant difference (p = 0.05) in the total content of plasticizer was observed among oil species (soybean, canola, corn, and olive), the wider range and higher average of total content of plasticizers in olive oil than other oil species indicated the inconsistence of plasticizer contamination in olive oil and a possible priority for quality monitoring. No significant difference (p = 0.05) in the total content of plasticizers was found among glass-bottle (n = 4), plastic-bottle (n = 14), and metal-can (n = 3) packaging, implying that oil packaging is not the major cause of plasticizer contamination. The daily intake amount of plasticizers contained in edible oil on this U.S. retail market constituted only a minimum percentage of reference dose established by US EPA, thus no obvious toxicological effect might be caused. However, the fact that DEHP content in two olive oils exceeded relevant special migration limits (SMLs) of Europe and China might need attention.


Assuntos
Gorduras na Dieta/análise , Contaminação de Alimentos , Inspeção de Alimentos/métodos , Embalagem de Alimentos , Ácidos Ftálicos/análise , Óleos de Plantas/química , Plastificantes/análise , Delaware , Gorduras na Dieta/economia , Difusão , Disruptores Endócrinos/análise , Disruptores Endócrinos/química , Limite de Detecção , Azeite de Oliva , Ácidos Ftálicos/química , Óleos de Plantas/economia , Plastificantes/química , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA