Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(13): 7326-7349, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35776115

RESUMO

SETDB1 is a key regulator of lineage-specific genes and endogenous retroviral elements (ERVs) through its deposition of repressive H3K9me3 mark. Apart from its H3K9me3 regulatory role, SETDB1 has seldom been studied in terms of its other potential regulatory roles. To investigate this, a genomic survey of SETDB1 binding in mouse embryonic stem cells across multiple libraries was conducted, leading to the unexpected discovery of regions bereft of common repressive histone marks (H3K9me3, H3K27me3). These regions were enriched with the CTCF motif that is often associated with the topological regulator Cohesin. Further profiling of these non-H3K9me3 regions led to the discovery of a cluster of non-repeat loci that were co-bound by SETDB1 and Cohesin. These regions, which we named DiSCs (domains involving SETDB1 and Cohesin) were seen to be proximal to the gene promoters involved in embryonic stem cell pluripotency and lineage development. Importantly, it was found that SETDB1-Cohesin co-regulate target gene expression and genome topology at these DiSCs. Depletion of SETDB1 led to localized dysregulation of Cohesin binding thereby locally disrupting topological structures. Dysregulated gene expression trends revealed the importance of this cluster in ES cell maintenance as well as at gene 'islands' that drive differentiation to other lineages. The 'unearthing' of the DiSCs thus unravels a unique topological and transcriptional axis of control regulated chiefly by SETDB1.


Assuntos
Retrovirus Endógenos , Histona-Lisina N-Metiltransferase/metabolismo , Histonas , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Retrovirus Endógenos/metabolismo , Genômica , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Camundongos , Coesinas
2.
Appl Environ Microbiol ; 89(2): e0156822, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36752618

RESUMO

The compound 2-phenylethanol (2-PE) is a bulk flavor and fragrance with a rose-like aroma that can be produced by microbial cell factories, but its cellular toxicity inhibits cellular growth and limits strain performance. Specifically, the microbe Bacillus licheniformis has shown a strong tolerance to 2-PE. Understanding these tolerance mechanisms is crucial for achieving the hyperproduction of 2-PE. In this report, the mechanisms of B. licheniformis DW2 resistance to 2-PE were studied by multi-omics technology coupled with physiological and molecular biological approaches. 2-PE induced reactive oxygen species formation and affected nucleic acid, ribosome, and cell wall synthesis. To manage 2-PE stress, the antioxidant and global stress response systems were activated; the repair system of proteins and homeostasis of the ion and osmotic were initiated. Furthermore, the tricarboxylic acid cycle and NADPH synthesis pathways were upregulated; correspondingly, scanning electron microscopy revealed that cell morphology was changed. These results provide deeper insights into the adaptive mechanisms of B. licheniformis to 2-PE and highlight the potential targets for genetic manipulation to enhance 2-PE resistance. IMPORTANCE The ability to tolerate organic solvents is essential for bacteria producing these chemicals with high titer, yield, and productivity. As exemplified by 2-PE, bioproduction of 2-PE represents a promising alternative to chemical synthesis and plant extraction approaches, but its toxicity hinders successful large-scale microbial production. Here, a multi-omics approach is employed to systematically study the mechanisms of B. licheniformis DW2 resistance to 2-PE. As a 2-PE-tolerant strain, B. licheniformis displays multifactorial mechanisms of 2-PE tolerance, including activating global stress response and repair systems, increasing NADPH supply, changing cell morphology and membrane composition, and remodeling metabolic pathways. The current work yields novel insights into the mechanisms of B. licheniformis resistance to 2-PE. This knowledge can also be used as a clue for improving bacterial performances to achieve industrial-scale production of 2-PE and potentially applied to the production of other relevant organic solvents, such as tyrosol and hydroxytyrosol.


Assuntos
Bacillus licheniformis , Álcool Feniletílico , Bacillus licheniformis/genética , Bacillus licheniformis/metabolismo , Álcool Feniletílico/farmacologia , NADP/metabolismo , Ciclo do Ácido Cítrico , Redes e Vias Metabólicas
3.
BMC Microbiol ; 23(1): 20, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658495

RESUMO

BACKGROUND: The floc is a characteristic of microbial aggregate growth, displaying cloudy suspensions in water. Floc formation has been demonstrated in a series of bacteria and the floc-forming bacteria play a crucial role in activated sludge (AS) process widely used for municipal sewage and industrial wastewater treatment over a century. It has been demonstrated that some exopolysaccharide biosynthesis genes and the sigma factor (sigma54 or rpoN) were required for floc forming in some bacteria. However, the mechanism underlying the floc formation stills need to be elucidated. RESULTS: In this study, we demonstrate that a TPR (Tetratricopeptide repeats) protein-encoding gene prsT is required for floc formation of Aquincola tertiaricarbonis RN12 and an upstream PEP-CTERM gene (designated pepA), regulated by RpoN1, is involved in its floc formation but not swarming motility and biofilm formation. Overexpression of PepA could rescue the floc-forming phenotype of the rpoN1 mutant by decreasing the released soluble exopolysaccharides and increasing the bound polymers. CONCLUSION: Our results indicate that the wide-spread PEP-CTERM proteins play an important role in the self-flocculation of bacterial cells and may be a component of extracellular polymeric substances required for floc-formation.


Assuntos
Burkholderiales , Esgotos , Esgotos/microbiologia , Bactérias/genética , Proteínas , Floculação
4.
Int J Mol Sci ; 23(17)2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36077502

RESUMO

Cottonseed meal (CSM) is a good source of dietary proteins but is unsuitable for human consumption due to its gossypol content. To unlock its potential, we developed a protein extraction process with a gossypol removal treatment to generate CSM protein isolate (CSMPI) with ultra-low gossypol content. This process successfully reduced the free and total gossypol content to 4.8 ppm and 147.2 ppm, respectively, far below the US FDA limit. In addition, the functional characterisation of CSMPI revealed a better oil absorption capacity and water solubility than pea protein isolate. Proteome profiling showed that the treatment improved protein identification, while SDS-PAGE analysis indicated that the treatment did not induce protein degradation. Amino acid analysis revealed that post-treated CSMPI was rich in branched-chain amino acids (BCAAs). Mass spectrometry analysis of various protein fractions obtained from an in vitro digestibility assay helped to establish the digestibility profile of CSM proteins. Several potential allergens in CSMPI were also found using allergenic prediction software, but further evaluation based on their digestibility profiles and literature reviews suggests that the likelihood of CSMPI allergenicity remains low. Overall, our results help to navigate and direct the application of CSMPIs as alternative proteins toward nutritive human food application.


Assuntos
Óleo de Sementes de Algodão , Gossipol , Aminoácidos/análise , Ração Animal/análise , Óleo de Sementes de Algodão/análise , Óleo de Sementes de Algodão/química , Proteínas Alimentares , Humanos , Proteômica
5.
BMC Microbiol ; 21(1): 191, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34172012

RESUMO

BACKGROUND: The compromised gut microbiome that results from C-section birth has been hypothesized as a risk factor for the development of non-communicable diseases (NCD). In a double-blind randomized controlled study, 153 infants born by elective C-section received an infant formula supplemented with either synbiotic, prebiotics, or unsupplemented from birth until 4 months old. Vaginally born infants were included as a reference group. Stool samples were collected from day 3 till week 22. Multi-omics were deployed to investigate the impact of mode of delivery and nutrition on the development of the infant gut microbiome, and uncover putative biological mechanisms underlying the role of a compromised microbiome as a risk factor for NCD. RESULTS: As early as day 3, infants born vaginally presented a hypoxic and acidic gut environment characterized by an enrichment of strict anaerobes (Bifidobacteriaceae). Infants born by C-section presented the hallmark of a compromised microbiome driven by an enrichment of Enterobacteriaceae. This was associated with meta-omics signatures characteristic of a microbiome adapted to a more oxygen-rich gut environment, enriched with genes associated with reactive oxygen species metabolism and lipopolysaccharide biosynthesis, and depleted in genes involved in the metabolism of milk carbohydrates. The synbiotic formula modulated expression of microbial genes involved in (oligo)saccharide metabolism, which emulates the eco-physiological gut environment observed in vaginally born infants. The resulting hypoxic and acidic milieu prevented the establishment of a compromised microbiome. CONCLUSIONS: This study deciphers the putative functional hallmarks of a compromised microbiome acquired during C-section birth, and the impact of nutrition that may counteract disturbed microbiome development. TRIAL REGISTRATION: The study was registered in the Dutch Trial Register (Number: 2838 ) on 4th April 2011.


Assuntos
Bactérias/genética , Cesárea/efeitos adversos , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Metagenoma/genética , Biodiversidade , Método Duplo-Cego , Humanos , Lactente , Recém-Nascido
6.
Biotechnol Bioeng ; 118(11): 4305-4316, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34289087

RESUMO

A robust monoclonal antibody (mAb) bioprocess requires physiological parameters such as temperature, pH, or dissolved oxygen to be well-controlled as even small variations in them could potentially impact the final product quality. For instance, pH substantially affects N-glycosylation, protein aggregation, and charge variant profiles, as well as mAb productivity. However, relatively less is known about how pH jointly influences product quality and titer. In this study, we investigated the effect of pH on culture performance, product titer, and quality profiles by applying longitudinal multi-omics profiling, including transcriptomics, proteomics, metabolomics, and glycomics, at three different culture pH set points. The subsequent systematic analysis of multi-omics data showed that pH set points differentially regulated various intracellular pathways including intracellular vesicular trafficking, cell cycle, and apoptosis, thereby resulting in differences in specific productivity, product titer, and quality profiles. In addition, a time-dependent variation in mAb N-glycosylation profiles, independent of pH, was identified to be mainly due to the accumulation of mAb proteins in the endoplasmic reticulum disrupting cellular homeostasis over culture time. Overall, this multi-omics-based study provides an in-depth understanding of the intracellular processes in mAb-producing CHO cell line under varied pH conditions, and could serve as a baseline for enabling the quality optimization and control of mAb production.


Assuntos
Anticorpos Monoclonais/biossíntese , Técnicas de Cultura de Células , Ciclo Celular , Metabolômica , Oxigênio/metabolismo , Animais , Células CHO , Cricetulus , Glicosilação , Concentração de Íons de Hidrogênio
7.
J Immunol ; 201(2): 451-464, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29848755

RESUMO

The ability of cells to induce the appropriate transcriptional response to inflammatory stimuli is crucial for the timely induction of host defense mechanisms. Although a role for tumor suppressor p14ARF (ARF) in the innate immune response was previously demonstrated, the underlying mechanism is still unclear. ARF is a potent upregulator of protein SUMOylation; however, no association of this function with the immune system has been made. In this study, we show the unique role of ARF in IFN-γ-induced immune response using human cell lines. Through a systematic search of proteins SUMOylated by ARF, we identified PIAS1, an inhibitor of IFN-activated transcription factor STAT1, as a novel ARF-binding partner and SUMOylation target. In response to IFN-γ treatment, ARF promoted PIAS1 SUMOylation to inhibit the ability of PIAS1 to attenuate IFN-γ response. Wild-type, but not ARF mutants unable to enhance PIAS1 SUMOylation, prevented the PIAS1-mediated inhibition of IFN-γ response. Conversely, the SUMO-deconjugase SENP1 deSUMOylated PIAS1 to reactivate PIAS1 that was inhibited by ARF. These findings suggest that PIAS1 function is negatively modulated by SUMO modification and that SUMOylation by ARF is required to inhibit PIAS1 activity and restore IFN-γ-induced transcription. In the presence of ARF, in which case PIAS1 is inhibited, depletion of PIAS1 did not have an additive effect on IFN-γ response, suggesting that ARF-mediated enhancement of IFN-γ response is mainly due to PIAS1 inhibition. Our findings reveal a novel function of ARF to inhibit PIAS1 by enhancing SUMOylation to promote the robust induction of IFN-γ response.


Assuntos
Imunidade Inata/imunologia , Interferon gama/imunologia , Proteínas Inibidoras de STAT Ativados/imunologia , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/imunologia , Sumoilação/imunologia , Proteína Supressora de Tumor p14ARF/imunologia , Linhagem Celular , Linhagem Celular Tumoral , Células HEK293 , Humanos , Inflamação/imunologia , Fator de Transcrição STAT1/imunologia , Transcrição Gênica/imunologia , Regulação para Cima/imunologia
8.
Biotechnol Bioeng ; 116(9): 2117-2129, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31066037

RESUMO

Chinese hamster ovary (CHO) cells are the most prevalent mammalian cell factories for producing recombinant therapeutic proteins due to their ability to synthesize human-like post-translational modifications and ease of maintenance in suspension cultures. Currently, a wide variety of CHO host cell lines has been developed; substantial differences exist in their phenotypes even when transfected with the same target vector. However, relatively less is known about the influence of their inherited genetic heterogeneity on phenotypic traits and production potential from the bioprocessing point of view. Herein, we present a global transcriptome and proteome profiling of three commonly used parental cell lines (CHO-K1, CHO-DXB11, and CHO-DG44) in suspension cultures and further report their growth-related characteristics, and N- and O-glycosylation patterns of host cell proteins (HCPs). The comparative multi-omics and subsequent genome-scale metabolic network model-based enrichment analyses indicated that some physiological variations of CHO cells grown in the same media are possibly originated from the genetic deficits, particularly in the cell-cycle progression. Moreover, the dihydrofolate reductase deficient DG44 and DXB11 possess relatively less active metabolism when compared to K1 cells. The protein processing abilities and the N- and O-glycosylation profiles also differ significantly across the host cell lines, suggesting the need to select host cells in a rational manner for the cell line development on the basis of recombinant protein being produced.


Assuntos
Proteoma/genética , Proteoma/metabolismo , Transcriptoma , Animais , Células CHO , Cricetulus , Glicosilação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
9.
Appl Microbiol Biotechnol ; 103(3): 1059-1067, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30515549

RESUMO

Malted barley is the main source for fermentable sugars used by yeasts in the traditional brewing of beers but its use has been increasingly substituted by unmalted barley and other raw grain adjuncts in recent years. The incorporation of raw grains is mainly economically driven, with the added advantage of improved sustainability, by reducing reliance on the malting process and its associated cost. The use of raw grains however, especially in high proportion, requires modifications to the brewing process to accommodate the lack of malt enzymes and the differences in structural and chemical composition between malted and raw grains. This review describes the traditional malting and brewing processes for the production of full malt beer, compares the modifications to these processes, namely milling and mashing, when raw barley or other grains are used in the production of wort-a solution of fermentable extracts metabolized by yeast and converted into beer, and discusses the activity of endogenous malt enzymes and the use of commercial brewing enzyme cocktails which enable high adjunct brewing.


Assuntos
Cerveja/microbiologia , Grão Comestível/metabolismo , Hordeum/metabolismo , Leveduras/enzimologia , Leveduras/metabolismo , Grão Comestível/microbiologia , Fermentação , Hordeum/microbiologia
10.
Environ Microbiol ; 20(5): 1677-1692, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29473278

RESUMO

Bacterial floc formation plays a central role in the activated sludge (AS) process, which has been widely utilized for sewage and wastewater treatment. The formation of AS flocs has long been known to require exopolysaccharide biosynthesis. This study demonstrates an additional requirement for a PEP-CTERM protein in Zoogloea resiniphila, a dominant AS bacterium harboring a large exopolysaccharide biosynthesis gene cluster. Two members of a wide-spread family of high copy number-per-genome PEP-CTERM genes, transcriptionally regulated by the RpoN sigma factor and accessory PrsK-PrsR two-component system and at least one of these, pepA, must be expressed for Zoogloea to build the floc structures that allow gravitational sludge settling and recycling. Without PrsK or PrsR, Zoogloea cells were planktonic rather than flocculated and secreted exopolysaccharides were released into the growth broth in soluble form. Overexpression of PepA could circumvent the requirement of rpoN, prsK and prsR for the floc-forming phenotype by fixing the exopolysaccharides to bacterial cells. However, overexpression of PepA, which underwent post-translational modifications, could not rescue the long-rod morphology of the rpoN mutant. Consistently, PEP-CTERM genes and exopolysaccharide biosynthesis gene cluster are present in the genome of the floc-forming Nitrospira comammox and Mitsuaria strain as well as many other AS bacteria.


Assuntos
Esgotos/microbiologia , Águas Residuárias/microbiologia , Zoogloea/fisiologia , Proteínas de Bactérias/metabolismo , Floculação , Fator sigma/metabolismo , Eliminação de Resíduos Líquidos , Águas Residuárias/química
11.
Appl Microbiol Biotechnol ; 102(9): 4159-4170, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29550991

RESUMO

Within the brewing industry, malted barley is being increasingly replaced by raw barley supplemented with exogenous enzymes to lessen reliance on the time-consuming, high water and energy cost of malting. Regardless of the initial grain of choice, malted or raw, the resultant bulk spent grains are rich in proteins (up to 25% dry weight). Efficient enzymatic solubilization of these proteins requires knowledge of the protein composition within the spent grains. Therefore, a comprehensive proteomic profiling was performed on spent grains derived from (i) malted barley (spent grain A, SGA) and (ii) enzymatically treated raw barley (spent grain B, SGB); data are available via ProteomeXchange with identifier PXD008090. Results from complementary shotgun proteomics and 2D gel electrophoresis showed that the most abundant proteins in both spent grains were storage proteins (hordeins and embryo globulins); these were present at an average of two fold higher in spent grain B. Quantities of other major proteins were generally consistent in both spent grains A and B. Subsequent in silico protein sequence analysis of the predominant proteins facilitated knowledge-based protease selection to enhance spent grain solubilization. Among tested proteases, Alcalase 2.4 L digestion resulted in the highest remaining protein solubilization with 9.2 and 11.7% net dry weight loss in SGA and SGB respectively within 2 h. Thus, Alcalase alone can significantly reduce spent grain side stream, which makes it a possible solution to increase the value of this low-value side stream from the brewing and malt extract beverage manufacturing industry.


Assuntos
Grão Comestível/metabolismo , Hordeum/genética , Hordeum/metabolismo , Proteínas de Plantas/metabolismo , Proteômica , Eletroforese em Gel Bidimensional , Proteínas de Plantas/análise
12.
Biotechnol Lett ; 39(5): 759-765, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28155177

RESUMO

OBJECTIVES: To evaluate the secretory and cytoplasmic expression of a thermostable Thermogata maritima invertase in Lactococcus lactis. RESULTS: The thermostable invertase from T. maritima was cloned with and without the USP45 secretory peptide into the pNZ8148 vector for nisin-inducible expression in L. lactis. The introduction of an USP45 secretion peptide at the N-terminal of the enzyme led to a loss of protein solubility. Computational homology modeling and hydrophobicity studies indicated that the USP45 peptide exposes a stretch of hydrophobic amino acids on the protein surface resulting in lower solubility. Removal of the USP45 secretion peptide allowed a soluble and functional invertase to be expressed intracellularly in L. lactis. Immobilized metal affinity chromatography purification of the cell lysate with nickel-NTA gave a single protein band on SDS-PAGE, while E. coli-expressed invertase consistently co-purified with an additional band. The yields of the purified invertase from E. coli and L. lactis were 14.1 and 6.3 mg/l respectively. CONCLUSIONS: Invertase can be expressed in L. lactis and purified in a functional form. L. lactis is a suitable host for the production of food-grade invertase for use in the food and biotechnology industries.


Assuntos
Lactococcus lactis/metabolismo , Proteínas Recombinantes/metabolismo , Thermotoga maritima/enzimologia , beta-Frutofuranosidase/metabolismo , Cromatografia de Afinidade , Clonagem Molecular , Estabilidade Enzimática , Lactococcus lactis/genética , Modelos Moleculares , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Temperatura , Thermotoga maritima/genética , beta-Frutofuranosidase/química , beta-Frutofuranosidase/genética , beta-Frutofuranosidase/isolamento & purificação
13.
Hum Mol Genet ; 23(2): 502-13, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24026679

RESUMO

Seipin regulates lipid homeostasis by preventing lipid droplet (LD) formation in non-adipocytes but promoting it in developing adipocytes. Here, we report that seipin interacts with 14-3-3ß through its N- and C-termini. Expression of 14-3-3ß is upregulated during adipogenesis, and its deletion results in defective adipogenesis without affecting key adipogenic transcription factors. We further identified the actin-severing protein cofilin-1 as an interacting partner to 14-3-3ß. Cofilin-1 was spatiotemporally recruited by 14-3-3ß in the cytoplasm during adipocyte differentiation. Extensive actin cytoskeleton remodelling, from stress fibres to cortical structures, was apparent during adipogenesis, but not under lipogenic conditions, indicating that actin cytoskeleton remodelling is only required for adipocyte development. Similar to seipin and 14-3-3ß, cofilin-1 knockdown led to impaired adipocyte development. At the cellular level, differentiated cells with knockdown of cofilin-1, 14-3-3ß or seipin continued to maintain relatively intact stress fibres, in contrast to cortical actin structure in control cells. Finally, 3T3-L1 cells expressing a severing-resistant actin mutant exhibited impaired adipogenesis. We propose that seipin regulates adipogenesis by recruiting cofilin-1 to remodel actin cytoskeleton through the 14-3-3ß protein.


Assuntos
Proteínas 14-3-3/metabolismo , Citoesqueleto de Actina/metabolismo , Adipócitos/fisiologia , Adipogenia , Cofilina 1/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Células 3T3-L1 , Animais , Subunidades gama da Proteína de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Proteínas Heterotriméricas de Ligação ao GTP/genética , Humanos , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL
14.
Proc Natl Acad Sci U S A ; 109(26): 10214-7, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22689954

RESUMO

Fluorescent small molecules have become indispensable tools for biomedical research along with the rapidly developing optical imaging technology. We report here a neural stem cell specific boron-dipyrromethane (BODIPY) derivative compound of designation red 3 (CDr3), developed through a high throughput/content screening of in-house generated diversity oriented fluorescence library in stem cells at different developmental stages. This novel compound specifically detects living neural stem cells of both human and mouse origin. Furthermore, we identified its binding target by proteomic analysis as fatty acid binding protein 7 (FABP7), also known as brain lipid binding protein) which is highly expressed in neural stem cells and localized in the cytoplasm. CDr3 will be a valuable chemical tool in the study and applications of neural stem cells.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Corantes Fluorescentes/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Proliferação de Células , Proteína 7 de Ligação a Ácidos Graxos , Humanos , Camundongos , Células-Tronco Neurais/citologia , Ligação Proteica
15.
Anal Chem ; 86(1): 395-402, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24144119

RESUMO

O-linked N-acetylglucosamine (O-GlcNAc) is a post-translational modification regulating proteins involved in a variety of cellular processes and diseases. Unfortunately, O-GlcNAc remains challenging to detect and quantify by shotgun mass spectrometry (MS) where it is time-consuming and tedious. Here, we investigate the potential of Multiple Reaction Monitoring Mass Spectrometry (MRM-MS), a targeted MS method, to detect and quantify native O-GlcNAc modified peptides without extensive labeling and enrichment. We report the ability of MRM-MS to detect a standard O-GlcNAcylated peptide and show that the method is robust to quantify the amount of O-GlcNAcylated peptide with a method detection limit of 3 fmol. In addition, when diluted by 100-fold in a trypsin-digested whole cell lysate, the O-GlcNAcylated peptide remains detectable. Next, we apply this strategy to study glycogen synthase kinase-3 beta (GSK-3ß), a kinase able to compete with O-GlcNAc transferase and modify identical site on proteins. We demonstrate that GSK-3ß is itself modified by O-GlcNAc in human embryonic stem cells (hESC). Indeed, by only using gel electrophoresis to grossly enrich GSK-3ß from whole cell lysate, we discover by MRM-MS a novel O-GlcNAcylated GSK-3ß peptide, bearing 3 potential O-GlcNAcylation sites. We confirm our finding by quantifying the increase of O-GlcNAcylation, following hESC treatment with an O-GlcNAc hydrolase inhibitor. This novel O-GlcNAcylation could potentially be involved in an autoinhibition mechanism. To the best of our knowledge, this is the first report utilizing MRM-MS to detect native O-GlcNAc modified peptides. This could potentially facilitate rapid discovery and quantification of new O-GlcNAcylated peptides/proteins.


Assuntos
Acetilglucosamina/análise , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/análise , Espectrometria de Massas/métodos , Acetilglucosamina/genética , Sequência de Aminoácidos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Células-Tronco Embrionárias/química , Células-Tronco Embrionárias/fisiologia , Humanos , Dados de Sequência Molecular , Processamento de Proteína Pós-Traducional/genética
16.
Cell Rep ; 42(12): 113473, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-37980562

RESUMO

In the human fungal pathogen Candida albicans, invasive hyphal growth is a well-recognized virulence trait. We employed transposon-mediated genome-wide mutagenesis, revealing that inactivating CTM1 blocks hyphal growth. CTM1 encodes a lysine (K) methyltransferase, which trimethylates cytochrome c (Cyc1) at K79. Mutants lacking CTM1 or expressing cyc1K79A grow as yeast under hyphae-inducing conditions, indicating that unmethylated Cyc1 suppresses hyphal growth. Transcriptomic analyses detected increased levels of the hyphal repressor NRG1 and decreased levels of hyphae-specific genes in ctm1Δ/Δ and cyc1K79A mutants, suggesting cyclic AMP (cAMP)-protein kinase A (PKA) signaling suppression. Co-immunoprecipitation and in vitro kinase assays demonstrated that unmethylated Cyc1 inhibits PKA kinase activity. Surprisingly, hyphae-defective ctm1Δ/Δ and cyc1K79A mutants remain virulent in mice due to accelerated proliferation. Our results unveil a critical role for cytochrome c in maintaining the virulence of C. albicans by orchestrating proliferation, growth mode, and metabolism. Importantly, this study identifies a biological function for lysine methylation on cytochrome c.


Assuntos
Candida albicans , Proteínas Fúngicas , Animais , Camundongos , Humanos , Candida albicans/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , AMP Cíclico/metabolismo , Citocromos c/metabolismo , Hifas , Lisina/metabolismo , Morfogênese , Regulação Fúngica da Expressão Gênica
17.
Bioresour Bioprocess ; 10(1): 93, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38647984

RESUMO

Bispecific antibody (bsAb), a novel therapeutic modality, provides excellent treatment efficacy, yet poses numerous challenges to downstream process development, which are mainly due to the intricate diversity of bsAb structures and impurity profiles. Ceramic hydroxyapatite (CHT), a mixed-mode medium, allows proteins to interact with its calcium sites (C-sites) through metal affinity and/or its phosphate sites (P-sites) through cation exchange interactions. This dual-binding capability potentially offers unique bind and elute behaviours for different proteins of interest, resulting in optimal product purity when suitable elution conditions are employed. In this study, the effectiveness of CHT as a polishing step for bsAb purification was investigated across three model molecules and benchmarked against the traditional cation exchange chromatography (CEX). For both asymmetric and symmetric IgG-like bsAb post Protein A eluates, at least 97% product purity was achieved after CHT polishing. CHT delivered a superior aggregate clearance to CEX, resulting in low high molecular weight (HMW) impurities (0.5%) and low process-related impurities in the product pools. Moreover, CHT significantly mitigated "chromatography-induced aggregation" whereas eightfold more HMW was generated by CEX. This study illustrated the developability of CHT in effectively eliminating low molecular weight (LMW) impurities through post-load-wash (PLW) optimization, resulting in an additional reduction of up to 48% in LMW impurities. A mechanistic explanation regarding the performance of impurity removal and mitigation of the chromatography-induced aggregation by CHT was proposed, illustrating unique CHT capability is potentially driven by C-site cooperation, of which effectiveness could depend on the bsAb composition and size.

18.
Anal Chem ; 84(15): 6693-700, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22839352

RESUMO

Phosphopeptides play a crucial role in many biological processes and constitute some of the most powerful biomarkers in disease detection. However they are often present in very low concentration, which makes their detection highly challenging. Here, we demonstrate the use of a solution-dispersible graphene-titania platform for the selective extraction of phosphopeptides from peptide mixtures. This is followed by direct analysis by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS). The efficient charge and energy exchange between graphene and TiO(2) during laser irradiation in SELDI-TOF MS promotes the soft ionization of analytes and affords a detection limit in the attomole range, which is 10(2)-10(5) more sensitive than conventional platforms. The graphene-titania platform can also be used for detecting phosphopeptides in cancer cells (HeLa cells), where it shows high specificity (94%). An expanded library of 967 unique phosphopeptides is detected using significantly reduced loading of extraction matrixes compared to conventional TiO(2) bead-based assays.


Assuntos
Grafite/química , Fosfopeptídeos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Titânio/química , Biologia Computacional , Células HeLa , Humanos , Ponto Isoelétrico , Nanotecnologia , Soluções/química , Tripsina/metabolismo
19.
Cancer Res ; 82(14): 2538-2551, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35583999

RESUMO

Mutations in the DNA mismatch repair gene MSH2 are causative of microsatellite instability (MSI) in multiple cancers. Here, we discovered that besides its well-established role in DNA repair, MSH2 exerts a novel epigenomic function in gastric cancer. Unbiased CRISPR-based mass spectrometry combined with genome-wide CRISPR functional screening revealed that in early-stage gastric cancer MSH2 genomic binding is not randomly distributed but rather is associated specifically with tumor-associated super-enhancers controlling the expression of cell adhesion genes. At these loci, MSH2 genomic binding was required for chromatin rewiring, de novo enhancer-promoter interactions, maintenance of histone acetylation levels, and regulation of cell adhesion pathway expression. The chromatin function of MSH2 was independent of its DNA repair catalytic activity but required MSH6, another DNA repair gene, and recruitment to gene loci by the SWI/SNF chromatin remodeler SMARCA4/BRG1. Loss of MSH2 in advanced gastric cancers was accompanied by deficient cell adhesion pathway expression, epithelial-mesenchymal transition, and enhanced tumorigenesis in vitro and in vivo. However, MSH2-deficient gastric cancers also displayed addiction to BAZ1B, a bromodomain-containing family member, and consequent synthetic lethality to bromodomain and extraterminal motif (BET) inhibition. Our results reveal a role for MSH2 in gastric cancer epigenomic regulation and identify BET inhibition as a potential therapy in MSH2-deficient gastric malignancies. SIGNIFICANCE: DNA repair protein MSH2 binds and regulates cell adhesion genes by enabling enhancer-promoter interactions, and loss of MSH2 causes deficient cell adhesion and bromodomain and extraterminal motif inhibitor synthetic lethality in gastric cancer.


Assuntos
Reparo de Erro de Pareamento de DNA , Neoplasias Gástricas , Adesão Celular/genética , Cromatina/genética , DNA Helicases/genética , Reparo de Erro de Pareamento de DNA/genética , Proteínas de Ligação a DNA/genética , Mutação em Linhagem Germinativa , Humanos , Proteína 1 Homóloga a MutL/genética , Proteína 2 Homóloga a MutS/genética , Proteínas Nucleares/genética , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Fatores de Transcrição/genética
20.
Front Endocrinol (Lausanne) ; 12: 653557, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33959097

RESUMO

Insulin and muscle contractions mediate glucose transporter 4 (GLUT4) translocation and insertion into the plasma membrane (PM) for glucose uptake in skeletal muscles. Muscle contraction results in AMPK activation, which promotes GLUT4 translocation and PM insertion. However, little is known regarding AMPK effectors that directly regulate GLUT4 translocation. We aim to identify novel AMPK effectors in the regulation of GLUT4 translocation. We performed biochemical, molecular biology and fluorescent microscopy imaging experiments using gain- and loss-of-function mutants of tropomodulin 3 (Tmod3). Here we report Tmod3, an actin filament capping protein, as a novel AMPK substrate and an essential mediator of AMPK-dependent GLUT4 translocation and glucose uptake in myoblasts. Furthermore, Tmod3 plays a key role in AMPK-induced F-actin remodeling and GLUT4 insertion into the PM. Our study defines Tmod3 as a key AMPK effector in the regulation of GLUT4 insertion into the PM and glucose uptake in muscle cells, and offers new mechanistic insights into the regulation of glucose homeostasis.


Assuntos
Membrana Celular/metabolismo , Transportador de Glucose Tipo 4/sangue , Mioblastos/metabolismo , Tropomodulina/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Transporte Biológico , Glucose/metabolismo , Glutationa/metabolismo , Humanos , Insulina/metabolismo , Lentivirus/metabolismo , Espectrometria de Massas , Camundongos , Músculo Esquelético/metabolismo , Fosforilação , Transporte Proteico , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA