Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Oral Dis ; 27(3): 577-588, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32691476

RESUMO

OBJECTIVE: The conditioned medium of calcined tooth powder (CTP-CM) is a type of biomimetic mineralized material and well contributing to bone healing and bone formation in vivo. However, little is known about the effect of CTP-CM on human periodontal ligament stem cells (hPDLSCs) as well as the underlying mechanisms. METHODS: ALP activity assay was conducted to select the concentration with the highest ALP level, which was used for the following experiments. Cell proliferation was measured by cell counting kit-8 assay and flow cytometry analysis. Expression levels of osteogenic markers in CTP-CM-induced hPDLSCs were evaluated with real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR), immunofluorescence staining, and Western blot. Mineralization of CTP-CM-induced hPDLSCs was evaluated by alizarin red staining. Furthermore, the involvement of NF-κB pathway was examined by immunofluorescence staining and Western blot. RESULTS: 20 µg/ml was selected for the further experiments. Functional studies demonstrated that CTP-CM exerted almost no influence on the proliferation of hPDLSCs and CTP-CM increased the osteogenic differentiation of hPDLSCs. Mechanistically, CTP-CM leads to activation of NF-κB signaling pathway. When treated with BMS345541, the osteogenic differentiation of CTP-CM-treated hPDLSCs was significantly attenuated. CONCLUSION: CTP-CM can promote the osteogenic differentiation of hPDLSCs via activating NF-κB pathway.


Assuntos
Osteogênese , Ligamento Periodontal , Humanos , Diferenciação Celular , Proliferação de Células , Células Cultivadas , NF-kappa B , Pós , Células-Tronco
2.
Biomed Eng Online ; 19(1): 18, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32245476

RESUMO

BACKGROUND: The remineralization approach mechanically occludes the exposed dentinal tubules mechanically, reduces the permeability of dentinal tubules and eliminates the symptoms of dentin hypersensitivity. The aim of the present study was to investigate the remineralization of demineralized dentin slices using CPP-ACP combined with TPP, and the research hypothesis was that CPP-ACP combined with TPP could result in extrafibrillar and intrafibrillar remineralization of dentin. METHODS: Demineralized dentin slices were prepared and randomly divided into the following groups: A (the CPP-ACP group), B (the CPP-ACP + TPP combination group), C (the artificial saliva group), D (the negative control group), and E (the positive control group). Dentin slice samples from groups A, B and C were remineralized and the remineralization effect was evaluated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray diffraction (XRD). RESULTS: Treatment with CPP-ACP combined with TPP occluded the dentinal tubules and resulted in remineralization of collagen fibrils. The hydroxyapatite crystals formed via remineralization were found to closely resemble the natural dentin components. CONCLUSION: CPP-ACP combined with TPP has a good remineralization effect on demineralized dentin slices.


Assuntos
Caseínas/farmacologia , Dentina/efeitos dos fármacos , Dentina/metabolismo , Minerais/metabolismo , Polifosfatos/farmacologia , Interações Medicamentosas , Humanos
3.
Exp Cell Res ; 383(2): 111562, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31437458

RESUMO

Biological phenotypes of mesenchymal stem cells (MSCs) are regulated by a series of biochemical elements, including microRNAs, hormones and growth factors. Our previous study illustrated a significant role of miR-141-3p during the osteogenic differentiation of stem cells from apical papilla (SCAPs). Nevertheless, the functions of miR-141-3p in regulating the proliferative ability and senescence of SCAPs have not been determined. This study identified that overexpression of miR-141-3p inhibited the proliferative ability of SCAPs. Meanwhile, the senescence of SCAPs was ahead of time. Conversely, transfection of miR-141-3p inhibitor promoted the proliferative ability of SCAPs and delayed their senescence. Yes-associated protein (YAP) was predicted as the downstream target gene of miR-141-3p by online softwares (miRDB, miRTarBase, miRWalk, and TargetScan), and was further verified by dual-luciferase reporter gene assay. Additionally, knockdown of YAP inhibited the proliferation and accelerated the senescence of SCAPs. Collectively, these findings proposed a novel direction that miR-141-3p impeded proliferative ability and promoted senescence of SCAPs through post-transcriptionally downregulating YAP.


Assuntos
Proteínas de Ciclo Celular/genética , Proliferação de Células/genética , Senescência Celular/genética , Papila Dentária/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/fisiologia , Fatores de Transcrição/genética , Adolescente , Diferenciação Celular/genética , Células Cultivadas , Regulação da Expressão Gênica , Células HEK293 , Humanos , Osteogênese/genética , Tecido Periapical/citologia , Tecido Periapical/metabolismo , Adulto Jovem
4.
Front Cell Dev Biol ; 9: 604400, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33692995

RESUMO

BACKGROUND: Long non-coding RNA (lncRNA) antisense non-coding RNA in the INK4 locus (ANRIL) is a base length of about 3.8 kb lncRNA, which plays an important role in several biological functions including cell proliferation, migration, and senescence. This study ascertained the role of lncRNA ANRIL in the senescence and osteogenic differentiation of inflamed periodontal ligament stem cells (iPDLSCs). METHODS: Healthy periodontal ligament stem cells (hPDLSCs) and iPDLSCs were isolated from healthy/inflamed periodontal ligament tissues, respectively. The proliferation abilities were determined by CCK-8, EdU assay, and flow cytometry (FCM). The methods of Western blot assay (WB), quantitative real-time polymerase chain reaction (qRT-PCR), alizarin red staining, alkaline phosphatase (ALP) staining, ALP activity detection, and immunofluorescence staining were described to determine the biological influences of lncRNA ANRIL on iPDLSCs. Senescence-associated (SA)-ß-galactosidase (gal) staining, Western blot analysis, and qRT-PCR were performed to determine cell senescence. Dual-luciferase reporter assays were conducted to confirm the binding of lncRNA ANRIL and miR-7-5-p, as well as miR-7-5p and insulin-like growth factor receptor (IGF-1R). RESULTS: HPDLSCs and iPDLSCs were isolated and cultured successfully. LncRNA ANRIL and IGF-1R were declined, while miR-7-5p was upregulated in iPDLSCs compared with hPDLSCs. Overexpression of ANRIL enhanced the osteogenic protein expressions of OSX, RUNX2, ALP, and knocked down the aging protein expressions of p16, p21, p53. LncRNA ANRIL could promote the committed differentiation of iPDLSCs by sponging miR-7-5p. Upregulating miR-7-5p inhibited the osteogenic differentiation of iPDLSCs. Further analysis identified IGF-1R as a direct target of miR-7-5p. The direct binding of lncRNA ANRIL and miR-7-5p, miR-7-5p and the 3'-UTR of IGF-1R were verified by dual-luciferase reporter assay. Besides, rescue experiments showed that knockdown of miR-7-5p reversed the inhibitory effect of lncRNA ANRIL deficiency on osteogenesis of iPDLSCs. CONCLUSION: This study disclosed that lncRNA ANRIL promotes osteogenic differentiation of iPDLSCs by regulating the miR-7-5p/IGF-1R axis.

5.
Stem Cell Res Ther ; 11(1): 461, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33138854

RESUMO

BACKGROUND: Osteogenesis is a complex biological process which requires the coordination of multiple molecular mechanisms. This research aimed to explore the biological role and underlying regulatory mechanism of circSIPA1L1 during the osteogenic differentiation of stem cells from apical papilla (SCAPs). METHODS: EdU retention assay, flow cytometry assay, and CCK-8 assay were used to evaluate the proliferation capacity of SCAPs. Western blot assay, alkaline phosphatase (ALP), and alizarin red staining (ARS) were conducted to investigate the biological roles of circSIPA1L1 and miR-204-5p. Fluorescence in situ hybridization was applied for circSIPA1L1 localization. Dual-luciferase reporter assay was performed to prove the interaction of circSIPA1L1 and miR-204-5p. RESULTS: CircSIPA1L1 had no significant effect on the proliferative capacity of SCAPs. CircSIPA1L1 promotes osteogenic differentiation of SCAPs by serving as a miRNA sponge for miR-204-5p. Either knockdown of circSIPA1L1 or overexpression of miR-204-5p significantly suppresses osteogenic differentiation of SCAPs. CONCLUSIONS: CircSIPA1L1 upregulates ALPL through targeting miR-204-5p and promotes the osteogenic differentiation of SCAPs.


Assuntos
Diferenciação Celular , MicroRNAs , Osteogênese , RNA Circular/genética , Células-Tronco/citologia , Fosfatase Alcalina , Células Cultivadas , Papila Dentária/citologia , Proteínas Ativadoras de GTPase , Humanos , Hibridização in Situ Fluorescente , MicroRNAs/genética , Osteogênese/genética
6.
Stem Cell Res Ther ; 11(1): 364, 2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32831141

RESUMO

BACKGROUND: Bone regeneration is preferred for bone loss caused by tumors, bone defects, fractures, etc. Recently, mesenchymal stem cells are considered as optimistic tools for bone defect therapy. Dental pulp stem cells (DPSCs) are a promising candidate for regenerative medicine and bone regeneration. Our previous study showed that upregulated circSIPA1L1 during osteogenesis of DPSCs is of significance. In this paper, the potential role of circSIPA1L1 in osteogenesis of DPSCs and its underlying mechanisms are explored. METHODS: The circular structure of circSIPA1L1 was identified by Sanger sequencing and PCR. Regulatory effects of circSIPA1L1 and miR-617 on mineral deposition in DPSCs were assessed by alkaline phosphatase (ALP) and alizarin red S (ARS) staining and in vivo bone formation assay were conducted to verify the biological influences of circSIPA1L1 on DPSCs. Western blot was performed to detect the protein expression of Smad3. Localization of circSIPA1L1 and miR-617 was confirmed by FISH. Dual-luciferase reporter assay and rescue experiments were conducted to investigate the role of the circSIPA1L1/miR-617/Smad3 regulatory axis in osteogenesis of DPSCs. RESULTS: Sanger sequencing and back-to-back primer experiments confirmed the closed-loop structure of circSIPA1L1. CircSIPA1L1 could promote the committed differentiation of DPSCs. MiR-617 was predicted to be the target binding circSIPA1L1 through MiRDB, miRTarBase, and TargetScan database analyses, which was further confirmed by dual-luciferase reporter assay. FISH results showed that circSIPA1L1 and miR-617 colocalize in the cytoplasm of DPSCs. MiR-617 exerted an inhibitory effect on the osteogenesis of DPSCs. Knockdown of circSIPA1L1 or upregulation of miR-617 downregulated phosphorylated Smad3. In addition, rescue experiments showed that knockdown of miR-617 reversed the inhibitory effect of circSIPA1L1 on osteogenesis of DPSCs. CONCLUSION: CircRNASIPA1L1 promotes osteogenesis of DPSCs by adsorbing miR-617 and further targeting Smad3.


Assuntos
MicroRNAs , Osteogênese , Diferenciação Celular , Células Cultivadas , Polpa Dentária , MicroRNAs/genética , Osteogênese/genética , RNA Circular , Células-Tronco
7.
Stem Cells Int ; 2020: 6673467, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33424977

RESUMO

The regeneration of bone and tooth tissues, and related cellular therapies, has attracted widespread attention. Bone marrow mesenchymal stem cells (BMSCs) are potential candidates for such regeneration. iRoot SP is a premixed bioceramic root canal sealer widely used in clinical settings. However, the effect of iRoot SP on the biological features of BMSCs has not been elucidated. In the present study, we found that 0.2 mg/ml iRoot SP conditioned medium promoted osteo/odontogenic differentiation and enhanced mineralization of BMSCs without affecting the proliferative ability. Mechanistically, the NF-κB and MAPK signaling pathways were activated in SP-treated BMSCs, and differentiation was inhibited when cultured with the specific inhibitor. Taken together, these findings demonstrate that iRoot SP promotes osteo/odontogenic differentiation of BMSCs via the NF-κB and MAPK signaling pathways, which could provide a new theoretical basis for clinical applications of iRoot SP and a new therapeutic target for the regeneration of bone and tooth tissue in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA