Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(30): e202404067, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38729916

RESUMO

Conventional photovoltaic (PV)-photodetectors are hard to detect fainted signals, while photomultiplication (PM)-capable devices indispensable for detecting weak light and are prone to degrade under strong light illumination and large bias, and it is urgent to realize highly efficient integrated detecting system with both PM and PV operation modes. In this work, one lead-free Cs3Cu2I5 nanocrystals with self-trapping exciton nature was introduced as interfacial layer adjacent to bulk and layer-by-layer heterojunction structure, and corresponding organic photodetectors with bias-switchable dual modes are demonstrated. The fabricated device exhibits low operating bias (0 V for PV mode and 0.8 V for PM mode), high specific detectivity (~1013 Jones), fast response speed as low as 1.59 µs, large bandwidth over 0.2 MHz and long-term operational stability last for 4 months in ambient condition. This synergy strategy also validated in different materials and device architectures, providing a convenient and scalable production process to develop highly efficient bias-switchable multi-functional organic optoelectrical applications.

2.
J Phys Chem Lett ; 12(20): 5039-5044, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34018757

RESUMO

The donor/acceptor weight ratio is crucial for photovoltaic performance of organic solar cells (OSCs). Here, we systematically investigate the photovoltaic behaviors of PM6:Y6 solar cells with different stoichiometries. It is found that the photovoltaic performance is tolerant to PM6 contents ranging from 10 to 60 wt %. Especially an impressive efficiency over 10% has been achieved in dilute donor solar cells with 10 wt % PM6 enabled by efficient charge generation, electron/hole transport, slow charge recombination, and field-insensitive extraction. This raises the question about the origin of efficient hole transport in such dilute donor structure. By investigating hole mobilities of PM6 diluted in Y6 and insulators, we find that effective hole transport pathway is mainly through PM6 phase in PM6:Y6 blends despite with low PM6 content. The results indicate that a low fraction of polymer donors combines with near-infrared nonfullerene acceptors could achieve high photovoltaic performance, which might be a candidate for semitransparent windows.

3.
J Phys Chem Lett ; 11(10): 3796-3802, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32338006

RESUMO

The dissociation of hybrid local exciton and charge transfer excitons (LE-CT) in efficient bulk-heterojunction nonfullerene solar cells contributes to reduced nonradiative photovoltage loss, a mechanism that still remains unclear. Herein we studied the energetic and entropic contribution in the hybrid LE-CT exciton dissociation in devices based on a conjugated terpolymer. Compared with reference devices based on ternary blends, the terpolymer devices demonstrated a significant reduction in the nonradiative photovoltage loss, regardless of the acceptor molecule, be it fullerene or nonfullerene. Fourier transform photocurrent spectroscopy revealed a significant LE-CT character in the terpolymer-based solar cells. Temperature-dependent hole mobility and photovoltage confirm that entropic and energetic effects contribute to the efficient LE-CT dissociation. The energetic disorder value measured in the fullerene- or nonfullerene-based terpolymer devices suggested that this entropic contribution came from the terpolymer, a signature of higher disorder in copolymers with multiple aromatic groups. This gives new insight into the fundamental physics of efficient LE-CT exciton dissociation with smaller nonradiative recombination loss.

4.
ACS Appl Mater Interfaces ; 12(21): 23904-23913, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32362118

RESUMO

Recently, benefiting from the merits of small-molecule acceptors (NFAs), polymer solar cells (PSCs) have achieved tremendous advances. From the perspective of the structural characteristics of the π-conjugated acceptor-donor-acceptor (A-D-A) type of organic molecules, the backbone's planarity and the terminal groups and their substituents have strong influences on the performances of the constructed NFAs. Through enlarging the dihedral angle of the conjugated main chain of NFAs, a certain degree of enhancement of photovoltaic parameters has been achieved. To further probe the influences of ending groups on the performances of nonplanar NFAs, we synthesized two new NFAs i-cc23 and i-cc34 with isomerized thiophene-fused ending groups and a twisted π-conjugated main chain. Compared to i-cc23 containing the 2-(6-oxo-5,6-dihydro-4H-cyclopenta[b]thiophen-4-ylidene)malononitrile ending group, the acceptor i-cc34 containing 2-(6-oxo-5,6-dihydro-4H-cyclopenta[c]thiophen-4-ylidene)malononitrile has a relatively higher molar extinction coefficient, bathochromic-shifted absorption spectrum, and deepened energy levels. When mixed with PBDB-T in solar cells, the i-cc23-based device achieved an excellent open-circuit voltage (VOC) of 1.10 V and a moderate power conversion efficiency of 7.34%. Although the VOC of the i-cc34-related device was decreased to 0.96 V, the short-circuit current density and fill factor were improved, giving rise to an enhanced efficiency of 9.51%. Apart from the distinct photovoltaic performances, the two isomer-based devices exhibit a high radiative efficiency of 8 × 10-4, leading to a very small nonradiative loss of 0.19 V. Our results emphasize the importance of the isomerized thiophene-fused ending groups on the performances of nonplanar NFA-based PSCs.

5.
Nat Commun ; 11(1): 617, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32001688

RESUMO

Charge separation dynamics after the absorption of a photon is a fundamental process relevant both for photosynthetic reaction centers and artificial solar conversion devices. It has been proposed that quantum coherence plays a role in the formation of charge carriers in organic photovoltaics, but experimental proofs have been lacking. Here we report experimental evidence of coherence in the charge separation process in organic donor/acceptor heterojunctions, in the form of low frequency oscillatory signature in the kinetics of the transient absorption and nonlinear two-dimensional photocurrent spectroscopy. The coherence plays a decisive role in the initial ~200 femtoseconds as we observe distinct experimental signatures of coherent photocurrent generation. This coherent process breaks the energy barrier limitation for charge formation, thus competing with excitation energy transfer. The physics may inspire the design of new photovoltaic materials with high device performance, which explore the quantum effects in the next-generation optoelectronic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA