Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 45(12): 9723-9736, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38132453

RESUMO

Buffalo meat is gaining popularity for its nutritional properties, such as its low fat and cholesterol content. However, it is often unsatisfactory to consumers due to its dark color and low tenderness. There is currently limited research on the regulatory mechanisms of buffalo meat quality. Xinglong buffalo are raised in the tropical Hainan region and are undergoing genetic improvement from draught to meat production. For the first time, we evaluated the meat quality traits of Xinglong buffalo using the longissimus dorsi muscle and compared them to Hainan cattle. Furthermore, we utilized a multi-omics approach combining transcriptomics and metabolomics to explore the underlying molecular mechanism regulating meat quality traits. We found that the Xinglong buffalo had significantly higher meat color redness but lower amino acid content and higher shear force compared to Hainan cattle. Differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) were identified, with them being significantly enriched in nicotinic acid and nicotinamide metabolic and glycine, serine, and threonine metabolic pathways. The correlation analysis revealed that those genes and metabolites (such as: GAMT, GCSH, PNP, L-aspartic acid, NADP+, and glutathione) are significantly associated with meat color, tenderness, and amino acid content, indicating their potential as candidate genes and biological indicators associated with meat quality. This study contributes to the breed genetic improvement and enhancement of buffalo meat quality.

2.
PeerJ ; 11: e15381, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37187517

RESUMO

Background: The inhibin alpha (INHA) gene is one of the important genes affecting the reproductive traits of animals. Hainan black goats are the main goat breed in Hainan Island (China), whose development is limited by low reproductive performance. However, the relationship between INHA gene and the reproductive performance of Hainan black goats is still unclear. Therefore, the purpose of this work was to explore the effect of INHA gene polymorphisms on the litter size of Hainan black goats. Methods: Single nucleotide polymorphisms (SNPs) of INHA were detected, and the genetic parameters and haplotype frequency of these SNPs were calculated and association analysis was performed for these SNPs with the litter size. Finally, the SNP with significant correlations to litter size was analyzed by Bioinformatics tools. Results: The results showed that the litter size of individuals with the AC genotype at loci g.28317663A>C of INHA gene was significantly higher than those with the AA genotype. This SNP changed the amino acid sequence, which may affect the function of INHA protein by affecting its structure. Our results suggest that g.28317663A>C loci may serve as a potential molecular marker for improving the reproductive traits in Hainan black goats.


Assuntos
Cabras , Polimorfismo de Nucleotídeo Único , Gravidez , Animais , Feminino , Tamanho da Ninhada de Vivíparos/genética , Cabras/genética , Polimorfismo de Nucleotídeo Único/genética , Inibinas/genética , Reprodução/genética
3.
Front Microbiol ; 13: 951473, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36187995

RESUMO

Gut microbiota plays a critical role in the healthy growth and development of young animals. However, there are few studies on the gut microbiota of young Hainan black goats. In this study, 12 three-month-old weaned lambs with the same birth date were selected and divided into the high body weight group (HW) and low body weight group (LW). The microbial diversity, composition, and predicted function in the feces of HW and LW groups were analyzed by collecting fecal samples and sequencing the 16S rRNA V3-V4 region. The results indicated that the HW group exhibited higher community diversity compared with the LW group, based on the Shannon index. The core phyla of the HW and LW groups were both Firmicutes and Bacteroidetes. Parabacteroides, UCG-005, and Bacteroides are the core genera of the HW group, and Bacteroides, Escherichia-Shigella, and Akkermansia are the core genera of the LW group. In addition, genera such as Ruminococcus and Anaerotruncus, which were positively correlated with body weight, were enriched in the HW group; those genera, such as Akkermansia and Christensenellaceae, which were negatively correlated with body weight, were enriched in the LW group. Differential analysis of the KEGG pathway showed that Amino Acid Metabolism, Energy Metabolism, Carbohydrate Metabolism, and Nucleotide Metabolism were enriched in the HW group, while Cellular Processes and Signaling, Lipid Metabolism, and Glycan Biosynthesis and Metabolism were enriched in the LW group. The results of this study revealed the gut microbial characteristics of Hainan black goats with different body weights at weaning age and identified the dominant flora that contributed to their growth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA