Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 343
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 25(4): 633-643, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38486021

RESUMO

Vaccines have reduced severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) morbidity and mortality, yet emerging variants challenge their effectiveness. The prevailing approach to updating vaccines targets the antibody response, operating under the presumption that it is the primary defense mechanism following vaccination or infection. This perspective, however, can overlook the role of T cells, particularly when antibody levels are low or absent. Here we show, through studies in mouse models lacking antibodies but maintaining functional B cells and lymphoid organs, that immunity conferred by prior infection or mRNA vaccination can protect against SARS-CoV-2 challenge independently of antibodies. Our findings, using three distinct models inclusive of a novel human/mouse ACE2 hybrid, highlight that CD8+ T cells are essential for combating severe infections, whereas CD4+ T cells contribute to managing milder cases, with interferon-γ having an important function in this antibody-independent defense. These findings highlight the importance of T cell responses in vaccine development, urging a broader perspective on protective immunity beyond just antibodies.


Assuntos
COVID-19 , Vacinas , Humanos , Animais , Camundongos , SARS-CoV-2 , Linfócitos T CD8-Positivos , COVID-19/prevenção & controle , Anticorpos , Vacinação , Anticorpos Antivirais , Anticorpos Neutralizantes
2.
J Virol ; 96(19): e0112222, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36121298

RESUMO

Zika virus (ZIKV) is an arbovirus member of the Flaviviridae family that causes severe congenital brain anomalies in infected fetuses. The key target cells of ZIKV infection, human neural progenitor cells (hNPCs), are highly permissive to infection that causes the inhibition of cell proliferation and induces cell death. We have previously shown that pharmaceutical-grade heparin inhibits virus-induced cell death with negligible effects on in vitro virus replication in ZIKV-infected hNPCs at the "high" multiplicity of infection (MOI) of 1. Here, we show that heparin inhibits formation of ZIKV-induced intracellular vacuoles, a signature of paraptosis, and inhibits necrosis and apoptosis of hNPCs grown as neurospheres (NS). To test whether heparin preserved the differentiation of ZIKV-infected hNPCs into neuroglial cells, hNPCs were infected at the MOI of 0.001. In this experimental condition, heparin inhibited ZIKV replication by ca. 2 log10, mostly interfering with virion attachment, while maintaining its protective effect against ZIKV-induced cytopathicity. Heparin preserved differentiation into neuroglial cells of hNPCs that were obtained from either human-induced pluripotent stem cells (hiPSC) or by fetal tissue. Quite surprisingly, multiple additions of heparin to hNPCs enabled prolonged virus replication while preventing virus-induced cytopathicity. Collectively, these results highlight the potential neuroprotective effect of heparin that could serve as a lead compound to develop novel agents for preventing the damage of ZIKV infection on the developing brain. IMPORTANCE ZIKV is a neurotropic virus that invades neural progenitor cells (NPCs), causing inhibition of their proliferation and maturation into neurons and glial cells. We have shown previously that heparin, an anticoagulant also used widely during pregnancy, prevents ZIKV-induced cell death with negligible inhibition of virus replication. Here, we demonstrate that heparin also exerts antiviral activity against ZIKV replication using a much lower infectious inoculum. Moreover, heparin interferes with different modalities of virus-induced cell death. Finally, heparin-induced prevention of virus-induced NPC death allows their differentiation into neuroglial cells despite the intracellular accumulation of virions. These results highlight the potential use of heparin, or pharmacological agents derived from it, in pregnant women to prevent the devastating effects of ZIKV infection on the developing brain of their fetuses.


Assuntos
Heparina , Células-Tronco Neurais , Fármacos Neuroprotetores , Zika virus , Anticoagulantes/farmacologia , Antivirais/farmacologia , Morte Celular/efeitos dos fármacos , Diferenciação Celular , Heparina/farmacologia , Humanos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/virologia , Neuroglia/citologia , Neuroglia/virologia , Fármacos Neuroprotetores/farmacologia , Replicação Viral , Zika virus/efeitos dos fármacos , Zika virus/fisiologia , Infecção por Zika virus/tratamento farmacológico
3.
Mol Med ; 28(1): 108, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-36071400

RESUMO

BACKGROUND: High-mobility group box 1 protein (HMGB1) is an ubiquitous nuclear protein that once released in the extracellular space acts as a Damage Associated Molecular Pattern and promotes inflammation. HMGB1 is significantly elevated during Pseudomonas aeruginosa infections and has a clinical relevance in respiratory diseases such as Cystic Fibrosis (CF). Salicylates are HMGB1 inhibitors. To address pharmacological inhibition of HMGB1 with small molecules, we explored the therapeutic potential of pamoic acid (PAM), a salicylate with limited ability to cross epithelial barriers. METHODS: PAM binding to HMGB1 and CXCL12 was tested by Nuclear Magnetic Resonance Spectroscopy using chemical shift perturbation methods, and inhibition of HMGB1·CXCL12-dependent chemotaxis was investigated by cell migration experiments. Aerosol delivery of PAM, with single or repeated administrations, was tested in murine models of acute and chronic P. aeruginosa pulmonary infection in C57Bl/6NCrlBR mice. PAM efficacy was evaluated by read-outs including weight loss, bacterial load and inflammatory response in lung and bronco-alveolar lavage fluid. RESULTS: Our data and three-dimensional models show that PAM is a direct ligand of both HMGB1 and CXCL12. We also showed that PAM is able to interfere with heterocomplex formation and the related chemotaxis in vitro. Importantly, PAM treatment by aerosol was effective in reducing acute and chronic airway murine inflammation and damage induced by P. aeruginosa. The results indicated that PAM reduces leukocyte recruitment in the airways, in particular neutrophils, suggesting an impaired in vivo chemotaxis. This was associated with decreased myeloperoxidase and neutrophil elastase levels. Modestly increased bacterial burdens were recorded with single administration of PAM in acute infection; however, repeated administration in chronic infection did not affect bacterial burdens, indicating that the interference of PAM with the immune system has a limited risk of pulmonary exacerbation. CONCLUSIONS: This work established the efficacy of treating inflammation in chronic respiratory diseases, including bacterial infections, by topical delivery in the lung of PAM, an inhibitor of HMGB1.


Assuntos
Quimiocina CXCL12 , Proteína HMGB1 , Naftóis , Pneumonia Bacteriana , Animais , Quimiocina CXCL12/antagonistas & inibidores , Quimiotaxia/efeitos dos fármacos , Modelos Animais de Doenças , Proteína HMGB1/antagonistas & inibidores , Inflamação/tratamento farmacológico , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Naftóis/farmacologia , Pneumonia Bacteriana/tratamento farmacológico , Pseudomonas aeruginosa/metabolismo
4.
Eur J Immunol ; 51(8): 1980-1991, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34060652

RESUMO

High mobility group box-1 protein (HMGB1) is an alarmin that, once released, promotes inflammatory responses, alone and as a complex with the chemokine CXCL12. Here, we report that the HMGB1-CXCL12 complex plays an essential role also in homeostasis by controlling the migration of B lymphocytes. We show that extracellular HMGB1 is critical for the CXCL12-dependent egress of B cells from the Peyer's patches (PP). This promigratory function of the complex was restricted to the PPs, since HMGB1 was not required for B-cell migratory processes in other locations. Accordingly, we detected higher constitutive levels of the HMGB1-CXCL12 complex in PPs than in other lymphoid organs. HMGB1-CXCL12 in vivo inhibition was associated with a reduced basal IgA production in the gut. Collectively, our results demonstrate a role for the HMGB1-CXCL12 complex in orchestrating B-cell trafficking in homeostasis, and provide a novel target to control lymphocyte migration in mucosal immunity.


Assuntos
Linfócitos B/metabolismo , Quimiocina CXCL12/metabolismo , Proteína HMGB1/metabolismo , Imunidade nas Mucosas/imunologia , Nódulos Linfáticos Agregados/metabolismo , Animais , Linfócitos B/imunologia , Quimiocina CXCL12/imunologia , Quimiotaxia de Leucócito/imunologia , Proteína HMGB1/imunologia , Homeostase/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Nódulos Linfáticos Agregados/imunologia
5.
Gynecol Endocrinol ; 38(9): 736-741, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35848405

RESUMO

OBJECTIVE: To evaluate whether an unexpected poor response (cases with ≤3 oocytes) leads to a reduction in the pregnancy rate in IVF cycles compared to a suboptimal response (controls with 4-9 oocytes) in women with adequate ovarian reserve. METHODS: A nested case-control study performed in a retrospective cohort of couples undergoing IVF at the Infertility Unit of the ASST Lariana. Cases and controls had adequate ovarian reserve and were matched 1:1 for female age and number of previous cycles. Cumulative clinical pregnancy rate per oocyte retrieval was the main outcome. RESULTS: Overall, 113 cases and 113 matched controls were included; the median number of available oocytes was 2 and 6, respectively. The cumulative pregnancy rate per cycle was significantly reduced in cases compared to controls with a crude odds ratio = 0.45 [95% Confidence Interval: 0.28-0.82]. A binomial logistic model indicated that an increase in one oocyte increases the odds for cumulative pregnancy rate per cycle by 1.27 in women with 9 oocytes or less. The cumulative pregnancy rates per cycle in cases and controls, according to female age were respectively: 29% versus 54% in patients aged <35 years (p = 0.036); 22% versus 43% in patients aged 36-39 years (p = 0.048) and 11% versus 13% in patients 40-45 years old (p = 0.72). Patients belonging to older age groups showed decreasing probability of cumulative clinical pregnancy rates both among cases and controls group (p < 0.05). CONCLUSIONS: The number of available oocytes significantly affects the probability of success in IVF cycles with unexpected impaired ovarian response.


Assuntos
Fertilização in vitro , Reserva Ovariana , Coeficiente de Natalidade , Estudos de Casos e Controles , Feminino , Humanos , Recuperação de Oócitos , Indução da Ovulação , Gravidez , Taxa de Gravidez , Estudos Retrospectivos
6.
Nucleic Acids Res ; 48(16): 8993-9006, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32710624

RESUMO

Eukaryotic DNA is organized in nucleosomes, which package DNA and regulate its accessibility to transcription, replication, recombination and repair. Here, we show that in living cells nucleosomes protect DNA from high-energy radiation and reactive oxygen species. We combined sequence-based methods (ATAC-seq and BLISS) to determine the position of both nucleosomes and double strand breaks (DSBs) in the genome of nucleosome-rich malignant mesothelioma cells, and of the same cells partially depleted of nucleosomes. The results were replicated in the human MCF-7 breast carcinoma cell line. We found that, for each genomic sequence, the probability of DSB formation is directly proportional to the fraction of time it is nucleosome-free; DSBs accumulate distal from the nucleosome dyad axis. Nucleosome free regions and promoters of actively transcribed genes are more sensitive to DSB formation, and consequently to mutation. We argue that this may be true for a variety of chemical and physical DNA damaging agents.


Assuntos
Quebras de DNA de Cadeia Dupla/efeitos da radiação , DNA/efeitos da radiação , Nucleossomos/metabolismo , Animais , Linhagem Celular , Humanos , Células MCF-7 , Camundongos
7.
Mol Med ; 27(1): 58, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34098868

RESUMO

BACKGROUND: High mobility group box 1 (HMGB1) is a nuclear protein with extracellular inflammatory cytokine activity. It is passively released during cell death and secreted by activated cells of many lineages. HMGB1 contains three conserved redox-sensitive cysteine residues: cysteines in position 23 and 45 (C23 and C45) can form an intramolecular disulfide bond, whereas C106 is unpaired and is essential for the interaction with Toll-Like Receptor (TLR) 4. However, a comprehensive characterization of the dynamic redox states of each cysteine residue and of their impacts on innate immune responses is lacking. METHODS: Primary human macrophages or murine macrophage-like RAW 264.7 cells were activated in cell cultures by redox-modified or point-mutated (C45A) recombinant HMGB1 preparations or by lipopolysaccharide (E. coli.0111: B4). Cellular phosphorylated NF-κB p65 subunit and subsequent TNF-α release were quantified by commercial enzyme-linked immunosorbent assays. RESULTS: Cell cultures with primary human macrophages and RAW 264.7 cells demonstrated that fully reduced HMGB1 with all three cysteines expressing thiol side chains failed to generate phosphorylated NF-КB p65 subunit or TNF-α. Mild oxidation forming a C23-C45 disulfide bond, while leaving C106 with a thiol group, was required for HMGB1 to induce phosphorylated NF-КB p65 subunit and TNF-α production. The importance of a C23-C45 disulfide bond was confirmed by mutation of C45 to C45A HMGB1, which abolished the ability for cytokine induction. Further oxidation of the disulfide isoform also inactivated HMGB1. CONCLUSIONS: These results reveal critical post-translational redox mechanisms that control the proinflammatory activity of HMGB1 and its inactivation during inflammation.


Assuntos
Cisteína/metabolismo , Citocinas/metabolismo , Proteína HMGB1/metabolismo , Oxirredução , Animais , Biomarcadores , Células Cultivadas , Dissulfetos/metabolismo , Proteína HMGB1/genética , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Proteínas Mutantes , NF-kappa B/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Células RAW 264.7 , Proteínas Recombinantes , Transdução de Sinais
8.
Mol Med ; 27(1): 129, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663207

RESUMO

BACKGROUND: Host inflammation contributes to determine whether SARS-CoV-2 infection causes mild or life-threatening disease. Tools are needed for early risk assessment. METHODS: We studied in 111 COVID-19 patients prospectively followed at a single reference Hospital fifty-three potential biomarkers including alarmins, cytokines, adipocytokines and growth factors, humoral innate immune and neuroendocrine molecules and regulators of iron metabolism. Biomarkers at hospital admission together with age, degree of hypoxia, neutrophil to lymphocyte ratio (NLR), lactate dehydrogenase (LDH), C-reactive protein (CRP) and creatinine were analysed within a data-driven approach to classify patients with respect to survival and ICU outcomes. Classification and regression tree (CART) models were used to identify prognostic biomarkers. RESULTS: Among the fifty-three potential biomarkers, the classification tree analysis selected CXCL10 at hospital admission, in combination with NLR and time from onset, as the best predictor of ICU transfer (AUC [95% CI] = 0.8374 [0.6233-0.8435]), while it was selected alone to predict death (AUC [95% CI] = 0.7334 [0.7547-0.9201]). CXCL10 concentration abated in COVID-19 survivors after healing and discharge from the hospital. CONCLUSIONS: CXCL10 results from a data-driven analysis, that accounts for presence of confounding factors, as the most robust predictive biomarker of patient outcome in COVID-19.


Assuntos
COVID-19/diagnóstico , Quimiocina CXCL10/sangue , Doença da Artéria Coronariana/diagnóstico , Diabetes Mellitus/diagnóstico , Hipertensão/diagnóstico , Biomarcadores/sangue , Proteína C-Reativa/metabolismo , COVID-19/sangue , COVID-19/imunologia , COVID-19/mortalidade , Comorbidade , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/imunologia , Doença da Artéria Coronariana/mortalidade , Creatina/sangue , Diabetes Mellitus/sangue , Diabetes Mellitus/imunologia , Diabetes Mellitus/mortalidade , Feminino , Hospitalização , Humanos , Hipertensão/sangue , Hipertensão/imunologia , Hipertensão/mortalidade , Imunidade Humoral , Imunidade Inata , Inflamação , Unidades de Terapia Intensiva , L-Lactato Desidrogenase/sangue , Contagem de Leucócitos , Linfócitos/imunologia , Linfócitos/patologia , Masculino , Pessoa de Meia-Idade , Neutrófilos/imunologia , Neutrófilos/patologia , Prognóstico , Estudos Prospectivos , Estudos Retrospectivos , SARS-CoV-2 , Índice de Gravidade de Doença , Análise de Sobrevida
9.
EMBO Rep ; 20(10): e47788, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31418171

RESUMO

Extracellular HMGB1 triggers inflammation following infection or injury and supports tumorigenesis in inflammation-related malignancies. HMGB1 has several redox states: reduced HMGB1 recruits inflammatory cells to injured tissues forming a heterocomplex with CXCL12 and signaling via its receptor CXCR4; disulfide-containing HMGB1 binds to TLR4 and promotes inflammatory responses. Here we show that diflunisal, an aspirin-like nonsteroidal anti-inflammatory drug (NSAID) that has been in clinical use for decades, specifically inhibits in vitro and in vivo the chemotactic activity of HMGB1 at nanomolar concentrations, at least in part by binding directly to both HMGB1 and CXCL12 and disrupting their heterocomplex. Importantly, diflunisal does not inhibit TLR4-dependent responses. Our findings clarify the mode of action of diflunisal and open the way to the rational design of functionally specific anti-inflammatory drugs.


Assuntos
Quimiocina CXCL12/metabolismo , Diflunisal/farmacologia , Proteína HMGB1/metabolismo , Leucócitos/metabolismo , Células 3T3 , Animais , Quimiotaxia/efeitos dos fármacos , Diflunisal/química , Dissulfetos/metabolismo , Ácido Glicirrízico/farmacologia , Humanos , Inflamação/patologia , Leucócitos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Espectroscopia de Ressonância Magnética , Camundongos
10.
Phys Chem Chem Phys ; 23(46): 26401-26406, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34792074

RESUMO

The bulk band structure of the topological insulator Sb2Te3 is investigated by angle-resolved photoemission spectroscopy. Of particular interest is the dispersion of the uppermost valence band with respect to the topological surface state Dirac point. The valence band maximum has been calculated to be either near the Brillouin zone centre or in a low-symmetry position in the -M̄ azimuthal direction. In order to observe the full energy range of the valence band, the strongly p-doped crystals are counter-doped by surface alkali adsorption. The data show that the absolute valence band maximum is likely to be found at the bulk Γ point and predictions of a low-symmetry position with an energy higher than the surface Dirac point can be ruled out.

11.
Phys Chem Chem Phys ; 23(13): 7806-7813, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33136112

RESUMO

We present an experimental study of inelastic scattering processes on the (111) surface of the topological insulator Sb2Te3 using helium atom scattering. In contrast to other binary topological insulators such as Bi2Se3 and Bi2Te3, Sb2Te3 is much less studied and the as-grown Sb2Te3 sample turns out to be p-doped, with the Fermi-level located below the Dirac-point as confirmed by angle-resolved photoemission spectroscopy. We report the surface phonon dispersion along both high symmetry directions in the energy region below 11 meV, where the Rayleigh mode exhibits the strongest intensity. The experimental data is compared with a study based on density functional perturbation theory calculations, providing good agreement except for a set of additional peculiar inelastic events below the Rayleigh mode. In addition, an analysis of angular scans with respect to a number of additional inelastic events is presented, including resonance enhancement, kinematical focusing, focused inelastic resonance and surfing. In the latter case, phonon-assisted adsorption of the incident helium atom gives rise to a bound state where the helium atom rides the created Rayleigh wave.

12.
Immunol Rev ; 280(1): 74-82, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29027228

RESUMO

A single protein, HMGB1, directs the triggering of inflammation, innate and adaptive immune responses, and tissue healing after damage. HMGB1 is the best characterized damage-associated molecular pattern (DAMP), proteins that are normally inside the cell but are released after cell death, and allow the immune system to distinguish between antigens that are dangerous or not. Notably, cells undergoing severe stress actively secrete HMGB1 via a dedicated secretion pathway: HMGB1 is relocated from the nucleus to the cytoplasm and then to secretory lysosomes or directly to the extracellular space. Extracellular HMGB1 (either released or secreted) triggers inflammation and adaptive immunological responses by switching among multiple oxidation states, which direct the mutually exclusive choices of different binding partners and receptors. Immune cells are first recruited to the damaged tissue and then activated; thereafter, HMGB1 supports tissue repair and healing, by coordinating the switch of macrophages to a tissue-healing phenotype, activation and proliferation of stem cells, and neoangiogenesis. Inevitably, HMGB1 also orchestrates the support of stressed but illegitimate tissues: tumors. Concomitantly, HMGB1 enhances the immunogenicity of mutated proteins in the tumor (neoantigens), promoting anti-tumor responses and immunological memory. Tweaking the activities of HMGB1 in inflammation, immune responses and tissue repair could bring large rewards in the therapy of multiple medical conditions, including cancer.


Assuntos
Imunidade Adaptativa , Morte Celular , Dano ao DNA/imunologia , Proteína HMGB1/imunologia , Imunidade Inata , Inflamação/imunologia , Animais , Humanos , Oxirredução , Cicatrização
13.
Nature ; 507(7490): 109-13, 2014 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-24572365

RESUMO

Intermittent intense ultraviolet (UV) exposure represents an important aetiological factor in the development of malignant melanoma. The ability of UV radiation to cause tumour-initiating DNA mutations in melanocytes is now firmly established, but how the microenvironmental effects of UV radiation influence melanoma pathogenesis is not fully understood. Here we report that repetitive UV exposure of primary cutaneous melanomas in a genetically engineered mouse model promotes metastatic progression, independent of its tumour-initiating effects. UV irradiation enhanced the expansion of tumour cells along abluminal blood vessel surfaces and increased the number of lung metastases. This effect depended on the recruitment and activation of neutrophils, initiated by the release of high mobility group box 1 (HMGB1) from UV-damaged epidermal keratinocytes and driven by Toll-like receptor 4 (TLR4). The UV-induced neutrophilic inflammatory response stimulated angiogenesis and promoted the ability of melanoma cells to migrate towards endothelial cells and use selective motility cues on their surfaces. Our results not only reveal how UV irradiation of epidermal keratinocytes is sensed by the innate immune system, but also show that the resulting inflammatory response catalyses reciprocal melanoma-endothelial cell interactions leading to perivascular invasion, a phenomenon originally described as angiotropism in human melanomas by histopathologists. Angiotropism represents a hitherto underappreciated mechanism of metastasis that also increases the likelihood of intravasation and haematogenous dissemination. Consistent with our findings, ulcerated primary human melanomas with abundant neutrophils and reactive angiogenesis frequently show angiotropism and a high risk for metastases. Our work indicates that targeting the inflammation-induced phenotypic plasticity of melanoma cells and their association with endothelial cells represent rational strategies to specifically interfere with metastatic progression.


Assuntos
Inflamação/etiologia , Neoplasias Pulmonares/secundário , Melanoma/irrigação sanguínea , Melanoma/patologia , Neoplasias Cutâneas/patologia , Queimadura Solar/etiologia , Raios Ultravioleta , Animais , Movimento Celular/efeitos da radiação , Transformação Celular Neoplásica/efeitos da radiação , Modelos Animais de Doenças , Progressão da Doença , Feminino , Proteína HMGB1/metabolismo , Imunidade Inata/efeitos da radiação , Queratinócitos/metabolismo , Queratinócitos/patologia , Queratinócitos/efeitos da radiação , Neoplasias Pulmonares/irrigação sanguínea , Neoplasias Pulmonares/etiologia , Masculino , Melanócitos/patologia , Melanócitos/efeitos da radiação , Melanoma/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica/etiologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neoplasias Cutâneas/irrigação sanguínea , Neoplasias Cutâneas/etiologia , Queimadura Solar/complicações , Receptor 4 Toll-Like/metabolismo
14.
Cell Mol Life Sci ; 76(2): 211-229, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30306212

RESUMO

High mobility group box 1 (HMGB1) is a ubiquitous nuclear protein involved in transcription regulation, DNA replication and repair and nucleosome assembly. HMGB1 is passively released by necrotic tissues or actively secreted by stressed cells. Extracellular HMGB1 acts as a damage-associated molecular pattern (DAMPs) molecule and gives rise to several redox forms that by binding to different receptors and interactors promote a variety of cellular responses, including tissue inflammation or regeneration. Inhibition of extracellular HMGB1 in experimental models of myocardial ischemia/reperfusion injury, myocarditis, cardiomyopathies induced by mechanical stress, diabetes, bacterial infection or chemotherapeutic drugs reduces inflammation and is protective. In contrast, administration of HMGB1 after myocardial infarction induced by permanent coronary artery ligation ameliorates cardiac performance by promoting tissue regeneration. HMGB1 decreases contractility and induces hypertrophy and apoptosis in cardiomyocytes, stimulates cardiac fibroblast activities, and promotes cardiac stem cell proliferation and differentiation. Interestingly, maintenance of appropriate nuclear HMGB1 levels protects cardiomyocytes from apoptosis by preventing DNA oxidative stress, and mice with HMGB1cardiomyocyte-specific overexpression are partially protected from cardiac damage. Finally, higher levels of circulating HMGB1 are associated to human heart diseases. Hence, during cardiac injury, HMGB1 elicits both harmful and beneficial responses that may in part depend on the generation and stability of the diverse redox forms, whose specific functions in this context remain mostly unexplored. This review summarizes recent findings on HMGB1 biology and heart dysfunctions and discusses the therapeutic potential of modulating its expression, localization, and oxidative-dependent activities.


Assuntos
Proteína HMGB1/metabolismo , Cardiopatias/patologia , Alarminas/metabolismo , Animais , Biomarcadores/metabolismo , Cardiopatias/metabolismo , Humanos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miocardite/metabolismo , Miocardite/patologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
15.
Arterioscler Thromb Vasc Biol ; 38(9): 2079-2090, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30026277

RESUMO

Objective- Vascular calcification (VC) is age dependent and a risk factor for cardiovascular and all-cause mortality. VC involves the senescence-induced transdifferentiation of vascular smooth muscle cells (SMCs) toward an osteochondrogenic lineage resulting in arterial wall mineralization. miR-34a increases with age in aortas and induces vascular SMC senescence through the modulation of its target SIRT1 (sirtuin 1). In this study, we aimed to investigate whether miR-34a regulates VC. Approach and Results- We found that miR-34a and Runx2 (Runt-related transcription factor 2) expression correlates in young and old mice. Mir34a+/+ and Mir34a-/- mice were treated with vitamin D, and calcium quantification revealed that Mir34a deficiency reduces soft tissue and aorta medial calcification and the upregulation of the VC Sox9 (SRY [sex-determining region Y]-box 9) and Runx2 and the senescence p16 and p21 markers. In this model, miR-34a upregulation was transient and preceded aorta mineralization. Mir34a-/- SMCs were less prone to undergo senescence and under osteogenic conditions deposited less calcium compared with Mir34a+/+ cells. Furthermore, unlike in Mir34a+/+ SMC, the known VC inhibitors SIRT1 and Axl (AXL receptor tyrosine kinase) were only partially downregulated in calcifying Mir34a-/- SMC. Strikingly, constitutive miR-34a overexpression to senescence-like levels in human aortic SMCs increased calcium deposition and enhanced Axl and SIRT1 decrease during calcification. Notably, we also showed that miR-34a directly decreased Axl expression in human aortic SMC, and restoration of its levels partially rescued miR-34a-dependent growth arrest. Conclusions- miR-34a promotes VC via vascular SMC mineralization by inhibiting cell proliferation and inducing senescence through direct Axl and SIRT1 downregulation, respectively. This miRNA could be a good therapeutic target for the treatment of VC.


Assuntos
Senescência Celular/fisiologia , MicroRNAs/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Sirtuína 1/metabolismo , Calcificação Vascular , Adulto , Envelhecimento/patologia , Animais , Aorta/metabolismo , Proliferação de Células , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Regulação para Baixo , Humanos , Masculino , Camundongos , Camundongos Knockout , Músculo Liso Vascular/citologia , Fatores de Transcrição SOX9/metabolismo , Regulação para Cima , Adulto Jovem , Receptor Tirosina Quinase Axl
16.
Circ J ; 83(2): 368-378, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30487376

RESUMO

BACKGROUND: The rapid increase in the number of heart failure (HF) patients in parallel with the increase in the number of older people is receiving attention worldwide. HF not only increases mortality but decreases quality of life, creating medical and social problems. Thus, it is necessary to define molecular mechanisms underlying HF development and progression. HMGB2 is a member of the high-mobility group superfamily characterized as nuclear proteins that bind DNA to stabilize nucleosomes and promote transcription. A recent in vitro study revealed that HMGB2 loss in cardiomyocytes causes hypertrophy and increases HF-associated gene expression. However, it's in vivo function in the heart has not been assessed. Methods and Results: Western blotting analysis revealed increased HMGB2 expression in heart tissues undergoing pressure overload by transverse aorta constriction (TAC) in mice. Hmgb2 homozygous knockout (Hmgb2-/-) mice showed cardiac dysfunction due to AKT inactivation and decreased sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA)2a activity. Compared to wild-type mice, Hmgb2-/- mice had worsened cardiac dysfunction after TAC surgery, predisposing mice to HF development and progression. CONCLUSIONS: This study demonstrates that upregulation of cardiac HMGB2 is an adaptive response to cardiac stress, and that loss of this response could accelerate cardiac dysfunction, suggesting that HMGB2 plays a cardioprotective role.


Assuntos
Proteína HMGB2/análise , Insuficiência Cardíaca/etiologia , Animais , Western Blotting , Cardiotônicos/análise , Cardiotônicos/farmacologia , Constrição Patológica/complicações , Proteína HMGB2/genética , Proteína HMGB2/farmacologia , Insuficiência Cardíaca/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas c-akt/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
17.
Nucleic Acids Res ; 45(2): 902-914, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-27591253

RESUMO

Alternative splicing of terminal exons increases transcript and protein diversity. How physiological and pathological stimuli regulate the choice between alternative terminal exons is, however, largely unknown. Here, we show that Brahma (BRM), the ATPase subunit of the hSWI/SNF chromatin-remodeling complex interacts with BRCA1/BARD1, which ubiquitinates the 50 kDa subunit of the 3' end processing factor CstF. This results in the inhibition of transcript cleavage at the proximal poly(A) site and a shift towards inclusion of the distal terminal exon. Upon oxidative stress, BRM is depleted, cleavage inhibition is released, and inclusion of the proximal last exon is favoored. Our findings elucidate a novel regulatory mechanism, distinct from the modulation of transcription elongation by BRM that controls alternative splicing of internal exons.


Assuntos
Processamento Alternativo , Proteína BRCA1/metabolismo , Fator Estimulador de Clivagem/metabolismo , Éxons , Estresse Oxidativo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Adenosina Trifosfatases/metabolismo , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Humanos , Complexos Multiproteicos , Estresse Oxidativo/genética , Poli A , Ligação Proteica , Fatores de Transcrição/genética , Ubiquitinação
18.
Mol Med ; 24(1): 21, 2018 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-30134799

RESUMO

BACKGROUND: High Mobility Group Box 1 (HMGB1) was first identified as a nonhistone chromatin-binding protein that functions as a pro-inflammatory cytokine and a Damage-Associated Molecular Pattern molecule when released from necrotic cells or activated leukocytes. HMGB1 consists of two structurally similar HMG boxes that comprise the pro-inflammatory (B-box) and the anti-inflammatory (A-box) domains. Paradoxically, the A-box also contains the epitope for the well-characterized anti-HMGB1 monoclonal antibody "2G7", which also potently inhibits HMGB1-mediated inflammation in a wide variety of in vivo models. The molecular mechanisms through which the A-box domain inhibits the inflammatory activity of HMGB1 and 2G7 exerts anti-inflammatory activity after binding the A-box domain have been a mystery. Recently, we demonstrated that: 1) the TLR4/MD-2 receptor is required for HMGB1-mediated cytokine production and 2) the HMGB1-TLR4/MD-2 interaction is controlled by the redox state of HMGB1 isoforms. METHODS: We investigated the interactions of HMGB1 isoforms (redox state) or HMGB1 fragments (A- and B-box) with TLR4/MD-2 complex using Surface Plasmon Resonance (SPR) studies. RESULTS: Our results demonstrate that: 1) intact HMGB1 binds to TLR4 via the A-box domain with high affinity but an appreciable dissociation rate; 2) intact HMGB1 binds to MD-2 via the B-box domain with low affinity but a very slow dissociation rate; and 3) HMGB1 A-box domain alone binds to TLR4 more stably than the intact protein and thereby antagonizes HMGB1 by blocking HMGB1 from interacting with the TLR4/MD-2 complex. CONCLUSIONS: These findings not only suggest a model whereby HMGB1 interacts with TLR4/MD-2 in a two-stage process but also explain how the A-box domain and 2G7 inhibit HMGB1.


Assuntos
Proteína HMGB1/metabolismo , Antígeno 96 de Linfócito/metabolismo , Receptor 4 Toll-Like/metabolismo , Ressonância de Plasmônio de Superfície
19.
Mol Med ; 24(1): 31, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-30134809

RESUMO

After publication of this article (He et al., 2018), the corresponding authors recognised an error in Scheme 1, in particular to section "A. HMGB1/TLR4/MD-2 complex formation". Above "Step 2: B box binding to MD-2", the text incorrectly read: "Low affinity / extremely slow off". In addition, some text was omitted below "TLR4/MD-2". The correct version of Scheme 1 is included in this Correction article. The original article (He et al., 2018) has been corrected.

20.
Blood ; 128(20): 2435-2449, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27574188

RESUMO

Deep venous thrombosis (DVT) is one of the most common cardiovascular diseases, but its pathophysiology remains incompletely understood. Although sterile inflammation has recently been shown to boost coagulation during DVT, the underlying molecular mechanisms are not fully resolved, which could potentially identify new anti-inflammatory approaches to prophylaxis and therapy of DVT. Using a mouse model of venous thrombosis induced by flow reduction in the vena cava inferior, we identified blood-derived high-mobility group box 1 protein (HMGB1), a prototypical mediator of sterile inflammation, to be a master regulator of the prothrombotic cascade involving platelets and myeloid leukocytes fostering occlusive DVT formation. Transfer of platelets into Hmgb1-/- chimeras showed that this cell type is the major source of HMGB1, exposing reduced HMGB1 on their surface upon activation thereby enhancing the recruitment of monocytes. Activated leukocytes in turn support oxidation of HMGB1 unleashing its prothrombotic activity and promoting platelet aggregation. This potentiates the amount of HMGB1 and further nurtures the accumulation and activation of monocytes through receptor for advanced glycation end products (RAGE) and Toll-like receptor 2, leading to local delivery of monocyte-derived tissue factor and cytokines. Moreover, disulfide HMGB1 facilitates formation of prothrombotic neutrophil extracellular traps (NETs) mediated by RAGE, exposing additional HMGB1 on their extracellular DNA strands. Eventually, a vicious circle of coagulation and inflammation is set in motion leading to obstructive DVT formation. Therefore, platelet-derived disulfide HMGB1 is a central mediator of the sterile inflammatory process in venous thrombosis and could be an attractive target for an anti-inflammatory approach for DVT prophylaxis.


Assuntos
Plaquetas/metabolismo , Proteína HMGB1/fisiologia , Trombose Venosa/genética , Animais , Plaquetas/patologia , Dissulfetos/química , Dissulfetos/metabolismo , Proteína HMGB1/química , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética , Trombose Venosa/metabolismo , Trombose Venosa/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA