RESUMO
AIMS: This study investigated the in vitro antibacterial activity of Hesperozygis ringens (Benth.) Epling leaf extracts against fish pathogenic bacteria, as well as the in vivo activity of the most active extract in silver catfish (Rhamdia quelen) experimentally infected with Aeromonas hydrophila. Moreover, the chemical composition of the extract used in the survival assay was evaluated. METHODS AND RESULTS: Only hexane extract (HEHR) showed in vitro antibacterial activity (MIC and MBC ranging from 1600 to 3200 µg ml-1 ) against clinical isolates of A. hydrophila, Raoultella ornithinolytica and Citrobacter freundii, obtained from naturally infected silver catfish, and A. hydrophilaATCC 7966. The major compound of the volatile fraction of HEHR was determined as pulegone. HEHR promoted a 93·33% relative survival rate of silver catfish experimentally infected with A. hydrophila 7 days after a single therapeutic bath at 30 mg l-1 , while florfenicol at 4 mg l-1 , which promoted a 60% relative survival rate. CONCLUSIONS: The antibacterial activity of H. ringens (Benth.) Epling leaf extracts seems to be related to phytochemicals of apolar character, since HEHR promoted better survival rate of infected animals than florfenicol. SIGNIFICANCE AND IMPACT OF THE STUDY: The HEHR has potential to be used in the control and treatment of bacterial infections in organic aquaculture.
Assuntos
Aeromonas hydrophila , Antibacterianos/uso terapêutico , Peixes-Gato/microbiologia , Doenças dos Peixes/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/veterinária , Lamiaceae/química , Animais , Monoterpenos Cicloexânicos , Doenças dos Peixes/microbiologia , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/microbiologia , Monoterpenos/análise , Extratos Vegetais/química , Extratos Vegetais/uso terapêuticoRESUMO
This study evaluated the anesthetic potential of thymol and carvacrol, and their influence on acetylcholinesterase (AChE) activity in the muscle and brain of silver catfish (Rhamdia quelen). The AChE activity of S-(+)-linalool was also evaluated. We subsequently assessed the effects of thymol and S-(+)-linalool on the GABAergic system. Fish were exposed to thymol and carvacrol (25, 50, 75, and 100 mg/L) to evaluate time for anesthesia and recovery. Both compounds induced sedation at 25 mg/L and anesthesia with 50-100 mg/L. However, fish exposed to carvacrol presented strong muscle contractions and mortality. AChE activity was increased in the brain of fish at 50 mg/L carvacrol and 100 mg/L thymol, and decreased in the muscle at 100 mg/L carvacrol. S-(+)-linalool did not alter AChE activity. Anesthesia with thymol was reversed by exposure to picrotoxin (GABAA antagonist), similar to the positive control propofol, but was not reversed by flumazenil (antagonist of benzodiazepine binding site), as observed for the positive control diazepam. Picrotoxin did not reverse the effect of S-(+)-linalool. Thymol exposure at 50 mg/L is more suitable than carvacrol for anesthesia in silver catfish, because this concentration did not cause any mortality or interference with AChE activity. Thymol interacted with GABAA receptors, but not with the GABAA/benzodiazepine site. In contrast, S-(+)-linalool did not act in GABAA receptors in silver catfish.