Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Biochem Biophys Res Commun ; 524(1): 198-204, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-31983430

RESUMO

Thick filaments from some striated muscles are regulated by phosphorylation of myosin regulatory light chains (RLCs). A tarantula thick filament quasi-atomic model achieved by cryo-electron microscopy has advanced our understanding on how this regulation occurs. In native thick filaments, an asymmetric intramolecular interaction between the actin-binding region of one myosin head ("blocked") and the converter region of the other head ("free") switches both heads off, establishing the myosin interacting-heads motif (IHM). This structural finding, together with motility assays, sequence analysis, and mass spectrometry (MS) observations have suggested a cooperative phosphorylation activation (CPA) mechanism for thick filament activation. In the CPA mechanism, some myosin free heads are phosphorylated constitutively in Ser35 by protein kinase C (PKC) and -under Ca2+ control - others (free or blocked) heads temporally on Ser45 by myosin light chain kinase (MLCK), in a way that explains both force development and post-tetanic potentiation in tarantula striated muscle. We tested this model using MS to verify if Ca2+-activation phosphorylates de novo un-phosphorylated Ser35 heads. For this purpose, we standardized an approach based on 18O isotopic ATP labeling to accurately detect by MS-MS the RLC phosphorylation under Ca2+-activation. MS spectra showed de novo18O incorporation only on Ser45 but not on Ser35. As the constitutive Ser35 phosphorylation cannot be dephosphorylated, this result suggests that the number of RLCs on free heads with constitutively phosphorylated Ser35 does remain constant on Ca2+-activation supporting that the myosin has a basal activation and force modulation or potentiation is controlled by MLCK Ser45 phosphorylation.


Assuntos
Marcação por Isótopo , Miosinas/metabolismo , Isótopos de Oxigênio/metabolismo , Serina/metabolismo , Aranhas/metabolismo , Sequência de Aminoácidos , Animais , Cadeias Leves de Miosina/química , Cadeias Leves de Miosina/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Fosforilação
2.
Biophys J ; 105(9): 2114-22, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24209856

RESUMO

Myosin filaments from many muscles are activated by phosphorylation of their regulatory light chains (RLCs). Structural analysis of relaxed tarantula thick filaments shows that the RLCs of the interacting free and blocked myosin heads are in different environments. This and other data suggested a phosphorylation mechanism in which Ser-35 of the free head is exposed and constitutively phosphorylated by protein kinase C, whereas the blocked head is hidden and unphosphorylated; on activation, myosin light chain kinase phosphorylates the monophosphorylated free head followed by the unphosphorylated blocked head, both at Ser-45. Our goal was to test this model of phosphorylation. Mass spectrometry of quickly frozen, intact muscles showed that only Ser-35 was phosphorylated in the relaxed state. The location of this constitutively phosphorylated Ser-35 was analyzed by immunofluorescence, using antibodies specific for unphosphorylated or phosphorylated Ser-35. In the relaxed state, myofibrils were labeled by anti-pSer-35 but not by anti-Ser-35, whereas in rigor, labeling was similar with both. This suggests that only pSer-35 is exposed in the relaxed state, while in rigor, Ser-35 is also exposed. In the interacting-head motif of relaxed filaments, only the free head RLCs are exposed, suggesting that the constitutive pSer-35 is on the free heads, consistent with the proposed mechanism.


Assuntos
Aracnídeos , Proteínas de Artrópodes/química , Proteínas de Artrópodes/metabolismo , Miosinas/química , Miosinas/metabolismo , Actinas/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/isolamento & purificação , Glicerol/química , Modelos Moleculares , Dados de Sequência Molecular , Quinase de Cadeia Leve de Miosina/metabolismo , Miosinas/isolamento & purificação , Fosforilação , Proteína Quinase C/metabolismo , Serina/metabolismo , Ureia/química
3.
JACS Au ; 3(7): 2025-2035, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37502151

RESUMO

Carbene footprinting is a recently developed mass spectrometry-based chemical labeling technique that probes protein interactions and conformation. Here, we use the methodology to investigate binding interactions between the protease human Caspase-1 (C285A) and full-length human Gasdermin D (hGSDMD), which are important in inflammatory cell death. GSDMD is cleaved by Caspase-1, releasing its N-terminal domain which oligomerizes in the membrane to form large pores, resulting in lytic cell death. Regions of reduced carbene labeling (masking), caused by protein binding, were observed for each partner in the presence of the other and were consistent with hCaspase-1 exosite and active-site interactions. Most notably, the results showed direct occupancy of hCaspase-1 (C285A) active-site by hGSDMD for the first time. Differential carbene labeling of full-length hGSDMD and the pore-forming N-terminal domain assembled in liposomes showed masking of the latter, consistent with oligomeric assembly and insertion into the lipid bilayer. Interactions between Caspase-1 and the specific inhibitor VRT-043198 were also studied by this approach. In wild-type hCaspase-1, VRT-043198 modifies the active-site Cys285 through the formation of a S,O-hemiacetal. Here, we showed by carbene labeling that this inhibitor can noncovalently occupy the active site of a C285A mutant. These findings add considerably to our knowledge of the hCaspase-1-hGSDMD system.

4.
R Soc Open Sci ; 7(1): 191048, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32218938

RESUMO

Chromatin remodelling and transcription factors play important roles in lineage commitment and development through control of gene expression. Activation of selected lineage-specific genes and repression of alternative lineage-affiliated genes result in tightly regulated cell differentiation transcriptional programmes. However, the complex functional and physical interplay between transcription factors and chromatin-modifying enzymes remains elusive. Recent evidence has implicated histone demethylases in normal haematopoietic differentiation as well as in malignant haematopoiesis. Here, we report an interaction between H3K4 demethylase JARID1A and the haematopoietic-specific master transcription proteins SCL and GATA1 in red blood cells. Specifically, we observe a direct physical contact between GATA1 and the second PHD domain of JARID1A. This interaction has potential implications for normal and malignant haematopoiesis.

5.
Biomol NMR Assign ; 13(2): 261-265, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30919308

RESUMO

SMARCAD1 is a non-canonical chromatin remodelling ATPase, unique in its domain organization in that is encodes tandem ubiquitin binding CUE domains along with a classical SNF2 helicase ATP-dependent motor. SMARCAD1 is conserved from yeast to humans and has reported roles in the maintenance of heterochromatin following replication and in double-strand break repair. Here we present the 1H, 13C and 15N assignments for the tandem CUE domains and for the disordered regions that flank them. These assignments provide the starting point for detailed investigations of the structure and interactions of this region of SMARCAD1.


Assuntos
DNA Helicases/química , Ressonância Magnética Nuclear Biomolecular , Humanos , Domínios Proteicos
6.
DNA Repair (Amst) ; 50: 22-35, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28073635

RESUMO

Proliferating cell nuclear antigen (PCNA) is an essential cofactor for DNA replication and repair, recruiting multiple proteins to their sites of action. We examined the effects of the PCNAS228I mutation that causes PCNA-associated DNA repair disorder (PARD). Cells from individuals affected by PARD are sensitive to the PCNA inhibitors T3 and T2AA, showing that the S228I mutation has consequences for undamaged cells. Analysis of the binding between PCNA and PCNA-interacting proteins (PIPs) shows that the S228I change dramatically impairs the majority of these interactions, including that of Cdt1, DNMT1, PolD3p66 and PolD4p12. In contrast p21 largely retains the ability to bind PCNAS228I. This property is conferred by the p21 PIP box sequence itself, which is both necessary and sufficient for PCNAS228I binding. Ubiquitination of PCNA is unaffected by the S228I change, which indirectly alters the structure of the inter-domain connecting loop. Despite the dramatic in vitro effects of the PARD mutation on PIP-degron binding, there are only minor alterations to the stability of p21 and Cdt1 in cells from affected individuals. Overall our data suggests that reduced affinity of PCNAS228I for specific clients causes subtle cellular defects in undamaged cells which likely contribute to the etiology of PARD.


Assuntos
Distúrbios no Reparo do DNA/metabolismo , Reparo do DNA , Replicação do DNA , Mutação de Sentido Incorreto , Antígeno Nuclear de Célula em Proliferação/metabolismo , Domínios e Motivos de Interação entre Proteínas/genética , Proteínas de Ciclo Celular/metabolismo , DNA Polimerase III/metabolismo , Humanos , Complexos Multiproteicos , Antígeno Nuclear de Célula em Proliferação/química , Antígeno Nuclear de Célula em Proliferação/genética , Ligação Proteica , Ubiquitinação
7.
Sci Pharm ; 78(4): 767-89, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21179316

RESUMO

The synthesis of the meso-tetra(pyren-1-yl)porphyrin (1) was successfully accomplished by means of the pyrrole condensation with pyrene-1-carb-aldehyde in acidic media. Its metallization was carried out in an almost quantitative yield to obtain the corresponding complexes of Ni(II) (2), Cu(II) (3) and Zn (4). Their photophysical properties such as fluorescence quantum yield and energy transfer to oxygen for an efficient generation of singlet oxygen were determined. Their photophysical and photochemical properties were compared with those of other similar porphyrin derivatives such as tetraphenylporphyrin and tetranaphthylporphyrin. Photochemical studies on their effectiveness as photosensitizer were carried out by means of the photoinduced oxidation of aromatic alcohols like Î-naphthol to naphthoquinone. The antibacterial photoactivity assay for compounds 1â4 was testeted against Escherichia coli (ATCC 8739) and its proliferation and viability were measured by chemiluminescence. An efficient inactivation of E. coli was observed. This was more efficient for compounds 2 and 3, following the direct relationship to high generation of singlet oxygen by these compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA