Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Semin Cancer Biol ; 69: 150-165, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-31454670

RESUMO

Application of nanotechnologies to cancer therapy might increase solubility and/or bioavailability of bioactive compounds of natural or synthetic origin and offers other potential benefits in cancer therapy, including selective targeting. In the present review we aim to evaluate in vivo studies on the anticancer activity of nanoparticles (NPs) obtained from food-derived flavonoids. From a systematic search a total of 60 studies were identified. Most of the studies involved the flavanol epigallocatechin-3-O-gallate and the flavonol quercetin, in both delivery and co-delivery (with anti-cancer drugs) systems. Moreover, some studies investigated the effects of other flavonoids, such as anthocyanins aglycones anthocyanidins, flavanones, flavones and isoflavonoids. NPs inhibited tumor growth in both xenograft and chemical-induced animal models of cancerogenesis. Encapsulation improved bioavailability and/or reduced toxicity of both flavonoids and/or co-delivered drugs, such as doxorubicin, docetaxel, paclitaxel, honokiol and vincristine. Moreover, flavonoids have been successfully applied in molecular targeted nanosystems. Selectivity for cancer cells involves pH- and/or reactive oxygen species-mediated mechanisms. Furthermore, flavonoids are good candidates as drug delivery for anticancer drugs in green synthesis systems. In conclusion, although human studies are needed, NPs obtained from food-derived flavonoids have promising anticancer effects in vivo.


Assuntos
Antineoplásicos/administração & dosagem , Dieta , Sistemas de Liberação de Medicamentos , Flavonoides/administração & dosagem , Nanopartículas/administração & dosagem , Neoplasias/tratamento farmacológico , Animais , Humanos , Nanopartículas/química , Neoplasias/patologia
2.
Molecules ; 26(17)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34500850

RESUMO

The metabolite profile of fresh Goji berries from two cultivars, namely Big Lifeberry (BL) and Sweet Lifeberry (SL), grown in the Lazio region (Central Italy) and harvested at two different periods, August and October, corresponding at the beginning and the end of the maturation, was characterized by means of nuclear magnetic resonance (NMR) and electrospray ionization Fourier transform ion cyclotron resonance (ESI FT-ICR MS) methodologies. Several classes of compounds such as sugars, amino acids, organic acids, fatty acids, polyphenols, and terpenes were identified and quantified in hydroalcoholic and organic Bligh-Dyer extracts. Sweet Lifeberry extracts were characterized by a higher content of sucrose with respect to the Big Lifeberry ones and high levels of amino acids (glycine, betaine, proline) were observed in SL berries harvested in October. Spectrophotometric analysis of chlorophylls and total carotenoids was also carried out, showing a decrease of carotenoids during the time. These results can be useful not only to valorize local products but also to suggest the best harvesting period to obtain a product with a chemical composition suitable for specific industrial use. Finally, preliminary studies regarding both the chemical characterization of Goji leaves generally considered a waste product, and the biological activity of Big Lifeberry berries extracts was also investigated. Goji leaves showed a chemical profile rich in healthy compounds (polyphenols, flavonoids, etc.) confirming their promising use in the supplements/nutraceutical/cosmetic field. MG63 cells treated with Big Lifeberry berries extracts showed a decrease of iNOS, COX-2, IL-6, and IL-8 expression indicating their significant biological activity.


Assuntos
Antioxidantes/química , Lycium/química , Extratos Vegetais/química , Carotenoides/química , Ácidos Graxos/química , Frutas , Humanos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Metabolômica , Polifenóis/química
3.
Bioorg Med Chem Lett ; 29(23): 126731, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31627992

RESUMO

The biosynthetic pathways of amino acids are attractive targets for drug development against pathogens with an intracellular behavior like M. tuberculosis (Mtb). Indeed, while in the macrophages Mtb has restricted access to amino acids such as tryptophan (Trp). Auxotrophic Mtb strains, with mutations in the Trp biosynthetic pathway, showed reduced intracellular survival in cultured human and murine macrophages and failed to cause the disease in immunocompetent and immunocompromised mice. Herein we present recent efforts in the discovery of Trp biosynthesis inhibitors.


Assuntos
Antituberculosos/uso terapêutico , Desenvolvimento de Medicamentos/métodos , Triptofano/metabolismo , Tuberculose/tratamento farmacológico , Animais , Antituberculosos/farmacologia , Humanos , Camundongos
4.
Antimicrob Agents Chemother ; 59(4): 2256-64, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25645825

RESUMO

Efficient iron acquisition is crucial for the pathogenesis of Mycobacterium tuberculosis. Mycobacterial iron uptake and metabolism are therefore attractive targets for antitubercular drug development. Resistance mutations against a novel pyrazolopyrimidinone compound (PZP) that is active against M. tuberculosis have been identified within the gene cluster encoding the ESX-3 type VII secretion system. ESX-3 is required for mycobacterial iron acquisition through the mycobactin siderophore pathway, which could indicate that PZP restricts mycobacterial growth by targeting ESX-3 and thus iron uptake. Surprisingly, we show that ESX-3 is not the cellular target of the compound. We demonstrate that PZP indeed targets iron metabolism; however, we found that instead of inhibiting uptake of iron, PZP acts as an iron chelator, and we present evidence that the compound restricts mycobacterial growth by chelating intrabacterial iron. Thus, we have unraveled the unexpected mechanism of a novel antimycobacterial compound.


Assuntos
Antibacterianos/farmacologia , Quelantes de Ferro/farmacologia , Mycobacterium smegmatis/efeitos dos fármacos , Pirazóis/farmacologia , Pirimidinonas/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Ferrozina/metabolismo , Ferro/metabolismo , Testes de Sensibilidade Microbiana , Mycobacterium smegmatis/genética , Oxazóis/metabolismo , Pirazóis/síntese química , Pirimidinonas/síntese química , RNA Bacteriano/metabolismo , Sideróforos/metabolismo
5.
Bioorg Med Chem Lett ; 25(11): 2401-4, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25913116

RESUMO

A series of N-((1,3-diphenyl-1H-pyrazol-4-yl)methyl)anilines were synthesized and evaluated in vitro for cytotoxicity and antiviral activity against a large panel of viruses. Most of the tested compounds interfered with RSV replication in the micromolar concentrations (EC50s ranging from 5 µM to 28 µM). SAR studies suggested that the presence of a trifluoromethyl group in R(1) abolished the anti-RSV activity and enhanced the cytotoxicity while the best results in term of both anti-RSV activity and selectivity were obtained by the introduction in R(1) of a chlorine or a bromine atom.


Assuntos
Compostos de Anilina/química , Antivirais/farmacologia , Pirazóis/química , Vírus Sinciciais Respiratórios/efeitos dos fármacos , Antivirais/síntese química , Antivirais/química , Linhagem Celular , Humanos , Replicação Viral/efeitos dos fármacos
6.
Bioorg Med Chem ; 23(4): 810-20, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25596758

RESUMO

We report herein the synthesis, biological evaluation and docking analysis of a new series of methylsulfonyl, sulfamoyl acetamides and ethyl acetates that selectively inhibit cyclooxygenase-2 (COX-2) isoform. Among the newly synthesized compounds, some of them were endowed with a good activity against COX-2 and a good selectivity COX-2/COX-1 in vitro as well as a desirable analgesic activity in vivo, proving that replacement of the ester moiety with an amide group gave access to more stable derivatives, characterized by a good COX-inhibition.


Assuntos
Acetamidas/química , Acetamidas/farmacologia , Acetatos/química , Acetatos/farmacologia , Inibidores de Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/farmacologia , Acetamidas/síntese química , Acetatos/síntese química , Analgésicos/síntese química , Analgésicos/química , Analgésicos/farmacologia , Animais , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/síntese química , Desenho de Fármacos , Humanos , Metilação , Camundongos , Simulação de Acoplamento Molecular , Ratos Sprague-Dawley , Ratos Wistar , Relação Estrutura-Atividade , Compostos de Enxofre/síntese química , Compostos de Enxofre/química , Compostos de Enxofre/farmacologia
7.
Bioorg Med Chem ; 22(2): 772-86, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24373735

RESUMO

We report herein the development, synthesis, physicochemical and pharmacological characterization of a novel class of pharmacodynamic hybrids that selectively inhibit cyclooxygenase-2 (COX-2) isoform and present suitable nitric oxide releasing properties. The replacement of the ester moiety with the amide group gave access to in vivo more stable and active derivatives that highlighted outstanding pharmacological properties. In particular, the glycine derivative proved to be extremely active in suppressing hyperalgesia and edema.


Assuntos
Amidas/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Ciclo-Oxigenase 2/metabolismo , Glicina/farmacologia , Óxido Nítrico/química , Ácido Acético , Amidas/química , Animais , Carragenina , Linhagem Celular , Constrição Patológica/induzido quimicamente , Constrição Patológica/tratamento farmacológico , Inibidores de Ciclo-Oxigenase 2/química , Edema/induzido quimicamente , Edema/tratamento farmacológico , Glicina/análogos & derivados , Glicina/química , Humanos , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Fígado/metabolismo , Masculino , Camundongos , Nitratos/metabolismo , Nitritos/metabolismo , Ratos , Ratos Wistar , Relação Estrutura-Atividade
8.
Pharmaceutics ; 16(6)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38931847

RESUMO

According to the latest World Health Organization (WHO) report, an estimated 10.6 million people were diagnosed with tuberculosis (TB) in 2022, and 1.30 million died. A major concern is the emergence of multi-drug-resistant (MDR) and extensively drug-resistant (XDR) strains, fueled by the length of anti-TB treatment and HIV comorbidity. Innovative anti-TB agents acting with new modes of action are the only solution to counteract the spread of resistant infections. To escape starvation and survive inside macrophages, Mtb has evolved to become independent of the host by synthesizing its own amino acids. Therefore, targeting amino acid biosynthesis could subvert the ability of the mycobacterium to evade the host immune system, providing innovative avenues for drug discovery. The aim of this review is to give an overview of the most recent progress in the discovery of amino acid biosynthesis inhibitors. Among the hits discovered over the past five years, tryptophan (Trp) inhibitors stand out as the most advanced and have significantly contributed to demonstrating the feasibility of this approach for future TB drug discovery. Future efforts should be directed at prioritizing the chemical optimization of these hits to enrich the TB drug pipeline with high-quality leads.

9.
Bioorg Med Chem Lett ; 23(18): 5128-30, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23927971

RESUMO

A series of 1-methyl-3,5-diphenyl-4,5-dihydro-1H-pyrazoles (3a-k and 4a-u) were designed, synthesized, and evaluated for their inhibitory efficacy towards the two hMAO isoforms. Most of the derivatives were found to be potent and selective hMAO-B inhibitors. In particular, derivative 3g showed greater hMAO-B affinity than selective inhibitor selegiline coupled with high selectivity index (SI=145). The most selective hMAO-B inhibitor was the 3-methyl analogue 3f with an SI higher than 909.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Monoaminoxidase/metabolismo , Pirazóis/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , Pirazóis/síntese química , Pirazóis/química , Relação Estrutura-Atividade
10.
J Chem Inf Model ; 53(6): 1463-74, 2013 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-23617317

RESUMO

Pharmacophoric mapping is a useful procedure to frame, especially when crystallographic receptor structures are unavailable as in ligand-based studies, the hypothetical site of interaction. In this study, 71 pyrrole derivatives active against M. tuberculosis were used to derive through a recent new 3-D QSAR protocol, 3-D QSAutogrid/R, several predictive 3-D QSAR models on compounds aligned by a previously reported pharmacophoric application. A final multiprobe (MP) 3-D QSAR model was then obtained configuring itself as a tool to derive pharmacophoric quantitative models. To stress the applicability of the described models, an external test set of unrelated and newly synthesized series of R-4-amino-3-isoxazolidinone derivatives found to be active at micromolar level against M. tuberculosis was used, and the predicted bioactivities were in good agreement with the experimental values. The 3-D QSAutogrid/R procedure proved to be able to correlate by a single multi-informative scenario the different activity molecular profiles thus confirming its usefulness in the rational drug design approach.


Assuntos
Antituberculosos/química , Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Pirróis/química , Pirróis/farmacologia , Relação Quantitativa Estrutura-Atividade , Desenho de Fármacos , Humanos , Modelos Moleculares , Oxazolidinonas/química , Oxazolidinonas/farmacologia , Tuberculose/tratamento farmacológico
11.
Bioorg Med Chem ; 21(13): 3695-701, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23680444

RESUMO

We report the synthesis and bio-pharmacological evaluation of a class of pyrrole derivatives featuring a small appendage fragment (carbaldehyde, oxime, nitrile) on the central core. Compound 1c proved to be extremely effective in vivo, showing an interesting anti-nociceptic profile that is comparable to reference compounds already marketed, hence representing a great stimulus for a further improvement of this class of molecules.


Assuntos
Analgésicos/química , Analgésicos/uso terapêutico , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/uso terapêutico , Pirróis/química , Pirróis/uso terapêutico , Analgésicos/farmacologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Linhagem Celular , Inibidores de Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Masculino , Camundongos , Dor/tratamento farmacológico , Pirróis/farmacologia , Relação Estrutura-Atividade
12.
Anal Bioanal Chem ; 405(16): 5467-87, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23604525

RESUMO

The use of selective oestrogen receptor modulators has been prohibited since 2005 by the World Anti-Doping Agency regulations. As they are extensively cleared by hepatic and intestinal metabolism via oxidative and conjugating enzymes, a complete investigation of their biotransformation pathways and kinetics of excretion is essential for the anti-doping laboratories to select the right marker(s) of misuse. This work was designed to characterize the chemical reactions and the metabolizing enzymes involved in the metabolic routes of clomiphene, tamoxifen and toremifene. To determine the biotransformation pathways of the substrates under investigation, urine samples were collected from six subjects (three females and three males) after oral administration of 50 mg of clomiphene citrate or 40 mg of tamoxifen or 60 mg of toremifene, whereas the metabolizing enzymes were characterized in vitro, using expressed cytochrome P450s and uridine diphosphoglucuronosyltransferases. The separation, identification and determination of the compounds formed in the in vivo and in vitro experiments were carried out by liquid chromatography coupled with mass spectrometry techniques using different acquisition modes. Clomiphene, tamoxifen and toremifene were biotransformed to 22, 23 and 18 metabolites respectively, these phase I reactions being catalyzed mainly by CYP3A4 and CYP2D6 isoforms and, to a lesser degree, by CYP3A5, CYP2B6, CYP2C9, CYP2C19 isoforms. The phase I metabolic reactions include hydroxylation in different positions, N-oxidation, dehalogenation, carboxylation, hydrogenation, methoxylation, N-dealkylation and combinations of them. In turn, most of the phase I metabolites underwent conjugation reaction to form the corresponding glucuro-conjugated mainly by UGT1A1, UGT1A3, UGT1A4, UGT2B7, UGT2B15 and UGT2B17 isoenzymes.


Assuntos
Cromatografia Líquida/métodos , Clomifeno/farmacocinética , Tamoxifeno/farmacocinética , Espectrometria de Massas em Tandem/métodos , Toremifeno/farmacocinética , Hidrocarboneto de Aril Hidroxilases/metabolismo , Biotransformação , Clomifeno/metabolismo , Clomifeno/urina , Citocromo P-450 CYP2B6 , Citocromo P-450 CYP2C19 , Citocromo P-450 CYP2C9 , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP3A/metabolismo , Remoção de Radical Alquila , Dopagem Esportivo , Feminino , Glucuronosiltransferase/metabolismo , Humanos , Hidroxilação , Masculino , Microssomos Hepáticos/metabolismo , Oxirredução , Oxirredutases N-Desmetilantes/metabolismo , Tamoxifeno/metabolismo , Tamoxifeno/urina , Toremifeno/metabolismo , Toremifeno/urina
13.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-37259352

RESUMO

Enterovirus B (EV-B)-related diseases, which can be life threatening in high-risk populations, have been recognized as a serious health problem, but their clinical treatment is largely supportive, and no selective antivirals are available on the market. As their clinical relevance has become more serious, efforts in the field of anti-EV-B inhibitors have greatly increased and many potential antivirals with very high selectivity indexes and promising in vitro activities have been discovered. The scope of this review encompasses recent advances in the discovery of new compounds with anti-viral activity against EV-B, as well as further progress in repurposing drugs to treat these infections. Current progress and future perspectives in drug discovery against EV-Bs are briefly discussed and existing gaps are spotlighted.

14.
Pharmaceutics ; 15(3)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36986888

RESUMO

Enteroviruses are one of the most abundant groups of viruses infecting humans, and yet there are no approved antivirals against them. To find effective antiviral compounds against enterovirus B group viruses, an in-house chemical library was screened. The most effective compounds against Coxsackieviruses B3 (CVB3) and A9 (CVA9) were CL212 and CL213, two N-phenyl benzamides. Both compounds were more effective against CVA9 and CL213 gave a better EC50 value of 1 µM with high a specificity index of 140. Both drugs were most effective when incubated directly with viruses suggesting that they mainly bound to the virions. A real-time uncoating assay showed that the compounds stabilized the virions and radioactive sucrose gradient as well as TEM confirmed that the viruses stayed intact. A docking assay, taking into account larger areas around the 2-and 3-fold axes of CVA9 and CVB3, suggested that the hydrophobic pocket gives the strongest binding to CVA9 but revealed another binding site around the 3-fold axis which could contribute to the binding of the compounds. Together, our data support a direct antiviral mechanism against the virus capsid and suggest that the compounds bind to the hydrophobic pocket and 3-fold axis area resulting in the stabilization of the virion.

15.
Antimicrob Agents Chemother ; 56(1): 324-31, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22024828

RESUMO

The 1,5-diarylpyrrole derivative BM212 was previously shown to be active against multidrug-resistant clinical isolates and Mycobacterium tuberculosis residing within macrophages as well as against Mycobacterium avium and other atypical mycobacteria. To determine its mechanism of action, we identified the cellular target. Spontaneous Mycobacterium smegmatis, Mycobacterium bovis BCG, and M. tuberculosis H37Rv mutants that were resistant to BM212 were isolated. By the screening of genomic libraries and by whole-genome sequencing, we found that all the characterized mutants showed mutations in the mmpL3 gene, allowing us to conclude that resistance to BM212 maps to the MmpL3 protein, a member of the MmpL (mycobacterial membrane protein, large) family. Susceptibility was unaffected by the efflux pump inhibitors reserpine, carbonylcyanide m-chlorophenylhydrazone, and verapamil. Uptake/efflux experiments with [(14)C]BM212 demonstrated that resistance is not driven by the efflux of BM212. Together, these data strongly suggest that the MmpL3 protein is the cellular target of BM212.


Assuntos
Antituberculosos/farmacologia , Genoma Bacteriano , Proteínas de Membrana Transportadoras/genética , Mycobacterium bovis/genética , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/genética , Piperazinas/farmacologia , Pirróis/farmacologia , Animais , Radioisótopos de Carbono , Carbonil Cianeto m-Clorofenil Hidrazona/análogos & derivados , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Bovinos , Análise Mutacional de DNA , Farmacorresistência Bacteriana Múltipla , Biblioteca Genômica , Humanos , Testes de Sensibilidade Microbiana , Mutação , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium bovis/efeitos dos fármacos , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Reserpina/farmacologia , Verapamil/farmacologia
16.
J Pharmacol Sci ; 120(1): 6-14, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22878602

RESUMO

The aim of this in vitro study was to examine the possible effect of [2-methyl-5-(4-methylsulphonyl)phenyl-1-phenyl-3-(2-n-propyloxyethyl)]-1H-pyrrole (VA441), a new selective cyclooxygenase (COX)-2 inhibitor, on human osteoarthritic (OA) chondrocyte cultivated in the presence or absence of interleukin-1ß (IL-1ß). In particular, we assessed the effects of 1 and 10 µM of VA441, celecoxib, and indomethacin on cell viability, COX-2 and inducible nitric oxide synthase (iNOS) gene expression, prostaglandin E(2) (PGE(2)) production, and nitric oxide (NO) and metalloproteinase-3 (MMP-3) release. Furthermore, we carried out morphological assessment by transmission electron microscopy (TEM). The presence of IL-1ß led to a significant increase in PGE(2), MMP-3, and NO production, as well as a significant increase in gene expression of COX-2 and iNOS. All the drugs tested had a statistically significant inhibitory effect on PGE(2) production and gene expression of COX-2 stimulated by IL-1ß. VA441 and celecoxib significantly suppressed IL-1ß-stimulated MMP-3 and NO and iNOS gene expression in a dose-dependent manner, while indomethacin did not show any significant effect on MMP-3 and NO production or on iNOS gene expression. TEM demonstrated that IL-1ß severely alters the structure of chondrocytes; after co-incubation with VA441 or celecoxib, the cells recovered their ultrastructure. Our data suggest that VA441 and celecoxib may have a beneficial effect on chondrocyte metabolism.


Assuntos
Condrócitos/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase 2/farmacologia , Pirróis/farmacologia , Sulfonas/farmacologia , Idoso , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Condrócitos/metabolismo , Ciclo-Oxigenase 2/genética , Dinoprostona/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-1beta/farmacologia , Metaloproteinase 3 da Matriz/metabolismo , Pessoa de Meia-Idade , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Osteoartrite
17.
Expert Opin Ther Pat ; 32(6): 649-666, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35240899

RESUMO

INTRODUCTION: Despite substantial progress in the field, malaria remains a global health issue and currently available control strategies are not sufficient to achieve eradication. Agents able to prevent transmission are likely to have a strong impact on malaria control and have been prioritized as a primary objective to reduce the number of secondary infections. Therefore, there is an increased interest in finding novel drugs targeting sexual stages of Plasmodium and innovative methods to target malaria transmission from host to vector, and vice versa. AREAS COVERED: This review covers innovative transmission-blocking inventions patented between 2015 and October 2021. The focus is on chemical interventions, which could be used as 'chemical vaccines' to prevent transmission (small molecules, carbohydrates, and polypeptides). EXPERT OPINION: Even though the development of novel strategies to block transmission still requires fundamental additional research and a deeper understanding of parasite sexual stages biology, the research in this field has significantly accelerated. Among innovative inventions patented over the last 6 years, the surface-delivery of antimalarial drugs to kill transmission-stages parasites in mosquitoes holds the highest promise for success in malaria control strategies, opening completely new scenarios in malaria transmission-blocking drug discovery.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Humanos , Malária/tratamento farmacológico , Malária/prevenção & controle , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Malária Falciparum/prevenção & controle , Patentes como Assunto , Plasmodium falciparum
18.
Pharmaceutics ; 14(3)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35335983

RESUMO

Tuberculosis remains one of the world's deadliest infectious diseases, accounting for nearly 1.3 million deaths every year. Tuberculosis treatment is challenging because of the toxicity, decreased bioavailability at the target site of the conventional drugs and, most importantly, low adherence of patients; this leads to drug resistance. Here, we describe the development of suitable nanocarriers with specific physicochemical properties to efficiently deliver two potent antimycobacterial compounds. We prepared nanoemulsions and niosomes formulations and loaded them with two different MmpL3 inhibitors previously identified (NEs + BM635 and NIs + BM859). NEs + BM635 and NIs + BM859 were deeply characterized for their physicochemical properties and anti-mycobacterial activity. NEs + BM635 and NIs + BM859 showed good hydrodynamic diameter, ζ-Potential, PDI, drug-entrapment efficiency, polarity, and microviscosity and stability. Even though both formulations proved to perform well, only NIs + BM859 showed potent antimycobacterial activity against M. tuberculosis (MIC = 0.6 µM) compared to that of the free compound. This is most probably caused by the fact that BM635, being highly hydrophobic, encounters maximum hindrance in diffusion, whereas BM859, characterized by high solubility in aqueous medium (152 µM), diffuses more easily. The niosomal formulation described in this work may be a useful therapeutic tool for tuberculosis treatment, and further studies will follow to characterize the in vivo behavior of the formulation.

19.
Bioorg Med Chem Lett ; 21(18): 5255-8, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21807515

RESUMO

Trypanothione reductase (TryR) is one of the favorite targets for those designing drugs for the treatment of Chagas disease. We present the application of a fast virtual screening approach for designing hit compounds active against TryR. Our protocol combines information derived from structurally known inhibitors and from the TryR receptor structure. Five structurally diverse hit compounds active against TryR and holding promise for the treatment of Chagas disease are reported.


Assuntos
Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala , NADH NADPH Oxirredutases/antagonistas & inibidores , Inibidores Enzimáticos/química , Modelos Moleculares , Estrutura Molecular , NADH NADPH Oxirredutases/metabolismo , Estereoisomerismo , Relação Estrutura-Atividade
20.
Bioorg Med Chem Lett ; 21(19): 5928-33, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21856155

RESUMO

Neuroblastoma (NB) represents the most common extracranial paediatric solid tumor for which no specific FDA-approved treatment is currently available. The tyrosine kinase c-Src has been reported to play an important role in the differentiation, cell-adhesion and survival of NB cells. Starting from dual Src/Abl inhibitors previously found active in NB cell lines (1-3), small modification of the original structures almost abolished the Abl activity with a contemporary improvement of affinity and specificity for c-Src. Among the synthesized compounds, the most potent c-Src inhibitor (10a) showed a very interesting antiproliferative activity in SH-SY5Y cells with an IC(50) of 80 nM and a favourable ADME profile. A 3D SAR analysis was also attempted and may guide the design of more potent c-Src inhibitors as potential agents for NB treatment.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Desenho de Fármacos , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Quinases da Família src/antagonistas & inibidores , Antineoplásicos/química , Antineoplásicos/farmacocinética , Adesão Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Concentração Inibidora 50 , Modelos Moleculares , Terapia de Alvo Molecular , Neuroblastoma/tratamento farmacológico , Neuroblastoma/patologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacocinética , Proteínas Proto-Oncogênicas c-abl/metabolismo , Pirazóis/síntese química , Pirimidinas , Relação Quantitativa Estrutura-Atividade , Especificidade por Substrato , Quinases da Família src/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA