Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nature ; 479(7371): 53-60, 2011 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-22051674

RESUMO

Clay minerals, recently discovered to be widespread in Mars's Noachian terrains, indicate long-duration interaction between water and rock over 3.7 billion years ago. Analysis of how they formed should indicate what environmental conditions prevailed on early Mars. If clays formed near the surface by weathering, as is common on Earth, their presence would indicate past surface conditions warmer and wetter than at present. However, available data instead indicate substantial Martian clay formation by hydrothermal groundwater circulation and a Noachian rock record dominated by evidence of subsurface waters. Cold, arid conditions with only transient surface water may have characterized Mars's surface for over 4 billion years, since the early-Noachian period, and the longest-duration aqueous, potentially habitable environments may have been in the subsurface.


Assuntos
Silicatos de Alumínio/análise , Silicatos de Alumínio/química , Meio Ambiente Extraterreno/química , Água Subterrânea/análise , Marte , Silicatos de Alumínio/classificação , Argila , Exobiologia , Gelo/análise , Silicatos/química
2.
Nature ; 448(7149): 60-3, 2007 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-17611538

RESUMO

Images of geomorphological features that seem to have been produced by the action of liquid water have been considered evidence for wet surface conditions on early Mars. Moreover, the recent identification of large deposits of phyllosilicates, associated with the ancient Noachian terrains suggests long-timescale weathering of the primary basaltic crust by liquid water. It has been proposed that a greenhouse effect resulting from a carbon-dioxide-rich atmosphere sustained the temperate climate required to maintain liquid water on the martian surface during the Noachian. The apparent absence of carbonates and the low escape rates of carbon dioxide, however, are indicative of an early martian atmosphere with low levels of carbon dioxide. Here we investigate the geochemical conditions prevailing on the surface of Mars during the Noachian period using calculations of the aqueous equilibria of phyllosilicates. Our results show that Fe3+-rich phyllosilicates probably precipitated under weakly acidic to alkaline pH, an environment different from that of the following period, which was dominated by strongly acid weathering that led to the sulphate deposits identified on Mars. Thermodynamic calculations demonstrate that the oxidation state of the martian surface was already high, supporting early escape of hydrogen. Finally, equilibrium with carbonates implies that phyllosilicate precipitation occurs preferentially at a very low partial pressure of carbon dioxide. We suggest that the possible absence of Noachian carbonates more probably resulted from low levels of atmospheric carbon dioxide, rather than primary acidic conditions. Other greenhouse gases may therefore have played a part in sustaining a warm and wet climate on the early Mars.


Assuntos
Meio Ambiente Extraterreno , Marte , Silicatos , Dióxido de Carbono , Efeito Estufa , Termodinâmica , Água
3.
Nature ; 442(7104): 790-2, 2006 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-16915283

RESUMO

The seasonal polar ice caps of Mars are composed mainly of CO2 ice. A region of low (< 30%) albedo has been observed within the south seasonal cap during early to mid-spring. The low temperature of this 'cryptic region' has been attributed to a clear slab of nearly pure CO2 ice, with the low albedo resulting from absorption by the underlying surface. Here we report near-infrared imaging spectroscopy of the south seasonal cap. The deep and broad CO2 absorption bands that are expected in the near-infrared with a thick transparent slab of CO2 ice are not observed. Models of the observed spectra indicate that the low albedo results from extensive dust contamination close to the surface of a CO2 ice layer, which could be linked to atmospheric circulation patterns. The strength of the CO2 absorption increases after mid-spring, so part of the dust is either carried away or buried more deeply in the ice layer during the CO2 ice sublimation process.

4.
Rev Sci Instrum ; 93(5): 054503, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35649797

RESUMO

MicrOmega, a miniaturized near-infrared hyperspectral microscope, has been selected to characterize in the laboratory the samples returned from Ryugu by the Hayabusa2 mission. MicrOmega has been delivered to the Extraterrestrial Samples Curation Center of the Japanese Aerospace eXploration Agency at the Institute of Space and Astronautical Science in July 2020 and then mounted and calibrated to be ready for the analyses of the samples returned to Earth on December 6, 2020. MicrOmega was designed to analyze the returned samples within a field of view of 5 × 5 mm2 and a spatial sampling of 22.5 µm. It acquires 3D near-infrared hyperspectral image-cubes by imaging the sample with monochromatic images sequentially covering the 0.99-3.65 µm spectral range, with a typical spectral sampling of 20 cm-1. This paper reports the calibration processes performed to extract scientific data from these MicrOmega image-cubes. The determination of the instrumental response and the spectral calibration is detailed. We meet or exceed the goals of achieving an accuracy of ∼20% for the absolute reflectance level, 1% for the relative wavelength-to-wavelength reflectance, and <5 nm for the peak position of the detected absorption features. For the nominal measurements of Ryugu samples with MicrOmega/Curation, the instrument performance also reaches a signal-to-noise ratio of >100 over the entire spectral range. By characterizing the entire collection of the returned samples at the microscopic scale, MicrOmega/Curation offers the potential to provide unprecedented insights into the composition and history of their asteroid parent body.


Assuntos
Microscopia , Calibragem , Microscopia/métodos
5.
Astrobiology ; 22(3): 263-292, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35263189

RESUMO

The Planetary Terrestrial Analogues Library (PTAL) project aims at building and exploiting a database involving several analytical techniques, to help characterize the mineralogical evolution of terrestrial bodies, starting with Mars. Around 100 natural Earth rock samples have been collected from selected locations to gather a variety of analogs for martian geology, from volcanic to sedimentary origin with different levels of alteration. All samples are to be characterized within the PTAL project with different mineralogical and elemental analysis techniques, including techniques brought on actual and future instruments at the surface of Mars (near infrared [NIR] spectroscopy, Raman spectroscopy, and laser-induced breakdown spectroscopy). This article presents the NIR measurements and interpretations acquired with the ExoMars MicrOmega spare instrument. MicrOmega is an NIR hyperspectral microscope, mounted in the analytical laboratory of the ExoMars rover Rosalind Franklin. All PTAL samples have been observed at least once with MicrOmega using a dedicated setup. For all PTAL samples, data description and interpretation are presented. For some chosen examples, color composite images and spectra are presented as well. A comparison with characterizations by NIR and Raman spectrometry is discussed for some of the samples. In particular, the spectral imaging capacity of MicrOmega allows detections of mineral components and potential organic molecules that were not possible with other one-spot techniques. In addition, it enables estimation of heterogeneities in the spatial distribution of various mineral species. The MicrOmega/PTAL data shall support the future observations and analyses performed by MicrOmega/Rosalind Franklin instrument.


Assuntos
Exobiologia , Marte , Planeta Terra , Exobiologia/métodos , Meio Ambiente Extraterreno/química , Minerais/análise
6.
Nature ; 428(6983): 627-30, 2004 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-15024393

RESUMO

The inventory of water and carbon dioxide reservoirs on Mars are important clues for understanding the geological, climatic and potentially exobiological evolution of the planet. From the early mapping observation of the permanent ice caps on the martian poles, the northern cap was believed to be mainly composed of water ice, whereas the southern cap was thought to be constituted of carbon dioxide ice. However, recent missions (NASA missions Mars Global Surveyor and Odyssey) have revealed surface structures, altimetry profiles, underlying buried hydrogen, and temperatures of the south polar regions that are thermodynamically consistent with a mixture of surface water ice and carbon dioxide. Here we present the first direct identification and mapping of both carbon dioxide and water ice in the martian high southern latitudes, at a resolution of 2 km, during the local summer, when the extent of the polar ice is at its minimum. We observe that this south polar cap contains perennial water ice in extended areas: as a small admixture to carbon dioxide in the bright regions; associated with dust, without carbon dioxide, at the edges of this bright cap; and, unexpectedly, in large areas tens of kilometres away from the bright cap.


Assuntos
Meio Ambiente Extraterreno/química , Gelo/análise , Marte , Água/análise , Dióxido de Carbono/análise , Dióxido de Carbono/química , Exobiologia , Geografia , Água/química
7.
Philos Trans A Math Phys Eng Sci ; 375(2097)2017 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-28554970

RESUMO

The Philae lander accomplished the first soft landing and the first scientific experiments of a human-made spacecraft on the surface of a comet. Planned, expected and unexpected activities and events happened during the descent, the touch-downs, the hopping across and the stay and operations on the surface. The key results were obtained during 12-14 November 2014, at 3 AU from the Sun, during the 63 h long period of the descent and of the first science sequence on the surface. Thereafter, Philae went into hibernation, waking up again in late April 2015 with subsequent communication periods with Earth (via the orbiter), too short to enable new scientific activities. The science return of the mission comes from eight of the 10 instruments on-board and focuses on morphological, thermal, mechanical and electrical properties of the surface as well as on the surface composition. It allows a first characterization of the local environment of the touch-down and landing sites. Unique conclusions on the organics in the cometary material, the nucleus interior, the comet formation and evolution became available through measurements of the Philae lander in the context of the Rosetta mission.This article is part of the themed issue 'Cometary science after Rosetta'.

8.
Astrobiology ; 17(6-7): 471-510, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31067287

RESUMO

The second ExoMars mission will be launched in 2020 to target an ancient location interpreted to have strong potential for past habitability and for preserving physical and chemical biosignatures (as well as abiotic/prebiotic organics). The mission will deliver a lander with instruments for atmospheric and geophysical investigations and a rover tasked with searching for signs of extinct life. The ExoMars rover will be equipped with a drill to collect material from outcrops and at depth down to 2 m. This subsurface sampling capability will provide the best chance yet to gain access to chemical biosignatures. Using the powerful Pasteur payload instruments, the ExoMars science team will conduct a holistic search for traces of life and seek corroborating geological context information. Key Words: Biosignatures-ExoMars-Landing sites-Mars rover-Search for life. Astrobiology 17, 471-510.

9.
Astrobiology ; 6(1): 34-47, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16551225

RESUMO

Over the next 2 decades, NASA and ESA are planning a series of space-based observatories to detect and characterize extrasolar planets. This first generation of observatories will not be able to spatially resolve the terrestrial planets detected. Instead, these planets will be characterized by disk-averaged spectroscopy. To assess the detectability of planetary characteristics in disk-averaged spectra, we have developed a spatially and spectrally resolved model of the Earth. This model uses atmospheric and surface properties from existing observations and modeling studies as input, and generates spatially resolved high-resolution synthetic spectra using the Spectral Mapping Atmospheric Radiative Transfer model. Synthetic spectra were generated for a variety of conditions, including cloud coverage, illumination fraction, and viewing angle geometry, over a wavelength range extending from the ultraviolet to the farinfrared. Here we describe the model and validate it against disk-averaged visible to infrared observations of the Earth taken by the Mars Global Surveyor Thermal Emission Spectrometer, the ESA Mars Express Omega instrument, and ground-based observations of earthshine reflected from the unilluminated portion of the Moon. The comparison between the data and model indicates that several atmospheric species can be identified in disk-averaged Earth spectra, and potentially detected depending on the wavelength range and resolving power of the instrument. At visible wavelengths (0.4-0.9 microm) O3, H2O, O2, and oxygen dimer [(O2)2] are clearly apparent. In the mid-infrared (5-20 microm) CO2, O3, and H2O are present. CH4, N2O, CO2, O3, and H2O are visible in the near-infrared (1-5 microm). A comprehensive three-dimensional model of the Earth is needed to produce a good fit with the observations.


Assuntos
Planeta Terra , Análise Espectral/métodos , Atmosfera , Exobiologia , Fenômenos Geológicos , Geologia , Modelos Teóricos , Planetas , Espectrofotometria , Espectroscopia de Luz Próxima ao Infravermelho , Luz Solar
10.
Astrobiology ; 9(3): 257-67, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19400732

RESUMO

Minerals and their occurrences can tell us about the chemistry, pressure, and temperatures of past environments on Mars and thus allow inferences about the potential for habitability. Thanks to recent space exploration, a new vision is emerging wherein Mars hosted environmental conditions of potential astrobiological relevance. This epoch is identified by the presence of phyllosilicate-bearing deposits, which are generally contained in very ancient basement rocks. In October 2008, over 100 planetary scientists representing 11 countries met in Paris to assess and discuss the relevance of martian phyllosilicates. The conference was structured to promote the discussion and debate of key scientific questions and key essential investigations. The purpose of this report is to document the current state of knowledge related to martian phyllosilicates and to ascertain which questions remain to be addressed: What are the basic characteristics of the phyllosilicate minerals on Mars? What are the genetic mechanisms by which phyllosilicate minerals have formed on Mars? What is the relationship between the phyllosilicate minerals observed in martian meteorites and those detected from orbit? What are the implications of phyllosilicate-bearing rocks for the development of prebiotic chemistry and the preservation of biosignatures? The most promising investigations to address these questions are presented.


Assuntos
Exobiologia , Meio Ambiente Extraterreno/química , Marte , Meteoroides , Minerais/química
11.
Astrobiology ; 9(1): 23-41, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19203241

RESUMO

In 2005 the then ESA Directorate for Human Spaceflight, Microgravity and Exploration (D-HME) commissioned a study from the European Science Foundation's (ESF) European Space Sciences Committee (ESSC) to examine the science aspects of the Aurora Programme in preparation for the December 2005 Ministerial Conference of ESA Member States, held in Berlin. A first interim report was presented to ESA at the second stakeholders meeting on 30 and 31 May 2005. A second draft report was made available at the time of the final science stakeholders meeting on 16 September 2005 in order for ESA to use its recommendations to prepare the Executive proposal to the Ministerial Conference. The final ESSC report on that activity came a few months after the Ministerial Conference (June 2006) and attempted to capture some elements of the new situation after Berlin, and in the context of the reduction in NASA's budget that was taking place at that time; e.g., the postponement sine die of the Mars Sample Return mission. At the time of this study, ESSC made it clear to ESA that the timeline imposed prior to the Berlin Conference had not allowed for a proper consultation of the relevant science community and that this should be corrected in the near future. In response to that recommendation, ESSC was asked again in the summer of 2006 to initiate a broad consultation to define a science-driven scenario for the Aurora Programme. This exercise ran between October 2006 and May 2007. ESA provided the funding for staff support, publication costs, and costs related to meetings of a Steering Group, two meetings of a larger ad hoc group (7 and 8 December 2006 and 8 February 2007), and a final scientific workshop on 15 and 16 May 2007 in Athens. As a result of these meetings a draft report was produced and examined by the Ad Hoc Group. Following their endorsement of the report and its approval by the plenary meeting of the ESSC, the draft report was externally refereed, as is now normal practice with all ESSC-ESF reports, and amended accordingly. The Ad Hoc Group defined overarching scientific goals for Europe's exploration programme, dubbed "Emergence and co-evolution of life with its planetary environments," focusing on those targets that can ultimately be reached by humans, i.e., Mars, the Moon, and Near Earth Objects. Mars was further recognized as the focus of that programme, with Mars sample return as the recognized primary goal; furthermore the report clearly states that Europe should position itself as a major actor in defining and leading Mars sample return missions. The report is reproduced in this article. On 26 November 2008 the Ministers of ESA Member States decided to give a high strategic priority to the robotic exploration programme of Mars by funding the enhanced ExoMars mission component, in line therefore with the recommendations from this ESSC-ESF report.


Assuntos
Agências Internacionais , Sociedades Científicas , Voo Espacial , Astronautas , Europa (Continente) , Meio Ambiente Extraterreno , Objetivos , Humanos , Cooperação Internacional , Marte , Planetas Menores , Lua , Robótica
12.
Science ; 321(5890): 830-3, 2008 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-18687963

RESUMO

Observations by the Mars Reconnaissance Orbiter/Compact Reconnaissance Imaging Spectrometer for Mars in the Mawrth Vallis region show several phyllosilicate species, indicating a wide range of past aqueous activity. Iron/magnesium (Fe/Mg)-smectite is observed in light-toned outcrops that probably formed via aqueous alteration of basalt of the ancient cratered terrain. This unit is overlain by rocks rich in hydrated silica, montmorillonite, and kaolinite that may have formed via subsequent leaching of Fe and Mg through extended aqueous events or a change in aqueous chemistry. A spectral feature attributed to an Fe2+ phase is present in many locations in the Mawrth Vallis region at the transition from Fe/Mg-smectite to aluminum/silicon (Al/Si)-rich units. Fe2+-bearing materials in terrestrial sediments are typically associated with microorganisms or changes in pH or cations and could be explained here by hydrothermal activity. The stratigraphy of Fe/Mg-smectite overlain by a ferrous phase, hydrated silica, and then Al-phyllosilicates implies a complex aqueous history.


Assuntos
Marte , Silicatos/análise , Água , Meio Ambiente Extraterreno , Ferro/análise , Magnésio/análise , Análise Espectral
13.
Science ; 312(5772): 400-4, 2006 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-16627738

RESUMO

Global mineralogical mapping of Mars by the Observatoire pour la Mineralogie, l'Eau, les Glaces et l'Activité (OMEGA) instrument on the European Space Agency's Mars Express spacecraft provides new information on Mars' geological and climatic history. Phyllosilicates formed by aqueous alteration very early in the planet's history (the "phyllocian" era) are found in the oldest terrains; sulfates were formed in a second era (the "theiikian" era) in an acidic environment. Beginning about 3.5 billion years ago, the last era (the "siderikian") is dominated by the formation of anhydrous ferric oxides in a slow superficial weathering, without liquid water playing a major role across the planet.


Assuntos
Marte , Minerais , Água , Silicatos de Alumínio , Atmosfera , Dióxido de Carbono , Argila , Meio Ambiente Extraterreno , Compostos Férricos , Silicatos , Sulfatos , Tempo
14.
Science ; 307(5715): 1584-6, 2005 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-15718428

RESUMO

The Observatoire pour la Minéralogie, l'Eau, les Glaces, et l'Activité (OMEGA) imaging spectrometer observed the northern circumpolar regions of Mars at a resolution of a few kilometers. An extended region at 240 degrees E, 85 degrees N, with an area of 60 kilometers by 200 kilometers, exhibits absorptions at wavelengths of 1.45, 1.75, 1.94, 2.22, 2.26, and 2.48 micrometers. These signatures can be unambiguously attributed to calcium-rich sulfates, most likely gypsum. This region corresponds to the dark longitudinal dunes of Olympia Planitia. These observations reveal that water alteration played a major role in the formation of the constituting minerals of northern circumpolar terrains.


Assuntos
Sulfato de Cálcio , Marte , Sulfatos , Atmosfera , Dióxido de Carbono , Meio Ambiente Extraterreno , Sedimentos Geológicos , Minerais , Astronave , Espectroscopia de Luz Próxima ao Infravermelho , Análise Espectral , Temperatura , Água
15.
Science ; 307(5715): 1587-91, 2005 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-15718429

RESUMO

The OMEGA/Mars Express hyperspectral imager identified hydrated sulfates on light-toned layered terrains on Mars. Outcrops in Valles Marineris, Margaritifer Sinus, and Terra Meridiani show evidence for kieserite, gypsum, and polyhydrated sulfates. This identification has its basis in vibrational absorptions between 1.3 and 2.5 micrometers. These minerals constitute direct records of the past aqueous activity on Mars.


Assuntos
Marte , Minerais , Sulfatos , Água , Sulfato de Cálcio , Meio Ambiente Extraterreno , Sedimentos Geológicos , Astronave , Temperatura , Tempo
16.
Science ; 307(5715): 1576-81, 2005 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-15718430

RESUMO

The Observatoire pour la Minéralogie, l'Eau, les Glaces, et l'Activité (OMEGA) investigation, on board the European Space Agency Mars Express mission, is mapping the surface composition of Mars at a 0.3- to 5-kilometer resolution by means of visible-near-infrared hyperspectral reflectance imagery. The data acquired during the first 9 months of the mission already reveal a diverse and complex surface mineralogy, offering key insights into the evolution of Mars. OMEGA has identified and mapped mafic iron-bearing silicates of both the northern and southern crust, localized concentrations of hydrated phyllosilicates and sulfates but no carbonates, and ices and frosts with a water-ice composition of the north polar perennial cap, as for the south cap, covered by a thin carbon dioxide-ice veneer.


Assuntos
Gelo , Marte , Minerais , Silicatos , Dióxido de Carbono , Gelo-Seco , Evolução Planetária , Meio Ambiente Extraterreno , Compostos Férricos , Sedimentos Geológicos , Compostos de Ferro , Compostos de Magnésio , Astronave , Água
17.
Science ; 310(5745): 92-5, 2005 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-16210535

RESUMO

Observations from the Cassini Visual and Infrared Mapping Spectrometer show an anomalously bright spot on Titan located at 80 degrees W and 20 degrees S. This area is bright in reflected light at all observed wavelengths, but is most noticeable at 5 microns. The spot is associated with a surface albedo feature identified in images taken by the Cassini Imaging Science Subsystem. We discuss various hypotheses about the source of the spot, reaching the conclusion that the spot is probably due to variation in surface composition, perhaps associated with recent geophysical phenomena.


Assuntos
Saturno , Atmosfera , Gelo-Seco , Meio Ambiente Extraterreno , Gelo , Metano , Astronave , Análise Espectral , Temperatura , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA