Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 167(3): 843-857.e14, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27720451

RESUMO

Glucagon and thyroid hormone (T3) exhibit therapeutic potential for metabolic disease but also exhibit undesired effects. We achieved synergistic effects of these two hormones and mitigation of their adverse effects by engineering chemical conjugates enabling delivery of both activities within one precisely targeted molecule. Coordinated glucagon and T3 actions synergize to correct hyperlipidemia, steatohepatitis, atherosclerosis, glucose intolerance, and obesity in metabolically compromised mice. We demonstrate that each hormonal constituent mutually enriches cellular processes in hepatocytes and adipocytes via enhanced hepatic cholesterol metabolism and white fat browning. Synchronized signaling driven by glucagon and T3 reciprocally minimizes the inherent harmful effects of each hormone. Liver-directed T3 action offsets the diabetogenic liability of glucagon, and glucagon-mediated delivery spares the cardiovascular system from adverse T3 action. Our findings support the therapeutic utility of integrating these hormones into a single molecular entity that offers unique potential for treatment of obesity, type 2 diabetes, and cardiovascular disease.


Assuntos
Glucagon/uso terapêutico , Doenças Metabólicas/tratamento farmacológico , Tri-Iodotironina/efeitos dos fármacos , Animais , Aterosclerose/tratamento farmacológico , Peso Corporal/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Engenharia Química/métodos , Colesterol/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Modelos Animais de Doenças , Combinação de Medicamentos , Sistemas de Liberação de Medicamentos , Sinergismo Farmacológico , Glucagon/efeitos adversos , Glucagon/química , Glucagon/farmacologia , Hiperglicemia/tratamento farmacológico , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Terapia de Alvo Molecular , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Obesidade/tratamento farmacológico , Tri-Iodotironina/efeitos adversos , Tri-Iodotironina/química , Tri-Iodotironina/farmacologia
2.
Int J Mol Sci ; 25(4)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38397010

RESUMO

A wound healing model was developed to elucidate the role of mesenchymal-matrix-associated transglutaminase 2 (TG2) in keratinocyte re-epithelialisation. TG2 drives keratinocyte migratory responses by activation of disintegrin and metalloproteinase 17 (ADAM17). We demonstrate that epidermal growth factor (EGF) receptor ligand shedding leads to EGFR-transactivation and subsequent rapid keratinocyte migration on TG2-positive ECM. In contrast, keratinocyte migration was impaired in TG2 null conditions. We show that keratinocytes express the adhesion G-protein-coupled receptor, ADGRG1 (GPR56), which has been proposed as a TG2 receptor. Using ADAM17 activation as a readout and luciferase reporter assays, we demonstrate that TG2 activates GPR56. GPR56 activation by TG2 reached the same level as observed with an agonistic N-GPR56 antibody. The N-terminal GPR56 domain is required for TG2-regulated signalling response, as the constitutively active C-GPR56 receptor was not activated by TG2. Signalling required the C-terminal TG2 ß-barrel domains and involved RhoA-associated protein kinase (ROCK) and ADAM17 activation, which was blocked by specific inhibitors. Cell surface binding of TG2 to the N-terminal GPR56 domain is rapid and is associated with TG2 and GPR56 endocytosis. TG2 and GPR56 represent a ligand receptor pair causing RhoA and EGFR transactivation. Furthermore, we determined a binding constant for the interaction of human TG2 with N-GPR56 and show for the first time that only the calcium-enabled "open" TG2 conformation associates with N-GPR56.


Assuntos
Proteína 2 Glutamina gama-Glutamiltransferase , Receptores Acoplados a Proteínas G , Humanos , Proteína ADAM17/genética , Proteína ADAM17/metabolismo , Receptores ErbB/metabolismo , Ligantes , Proteína 2 Glutamina gama-Glutamiltransferase/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
3.
Lab Invest ; 101(1): 70-88, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32948812

RESUMO

There are indications that pharmacological doses of ascorbate (Asc) used as an adjuvant improve the chemotherapeutic management of cancer. This favorable outcome stems from its cytotoxic effects due to prooxidative mechanisms. Since regulation of intracellular Ca2+ levels contributes to the maintenance of cell viability, we hypothesized that one of the effects of Asc includes disrupting regulation of intracellular Ca2+ homeostasis. Accordingly, we determined if Asc induced intracellular Ca2+ influx through activation of pertussis sensitive Gi/o-coupled GPCR which in turn activated transient receptor potential (TRP) channels in both etoposide-resistant and -sensitive retinoblastoma (WERI-Rb1) tumor cells. Ca2+ imaging, whole-cell patch-clamping, and quantitative real-time PCR (qRT-PCR) were performed in parallel with measurements of RB cell survival using Trypan Blue cell dye exclusion. TRPM7 gene expression levels were similar in both cell lines whereas TRPV1, TRPM2, TRPA1, TRPC5, TRPV4, and TRPM8 gene expression levels were downregulated in the etoposide-resistant WERI-Rb1 cells. In the presence of extracellular Ca2+, 1 mM Asc induced larger intracellular Ca2+ transients in the etoposide-resistant WERI-Rb1 than in their etoposide-sensitive counterpart. With either 100 µM CPZ, 500 µM La3+, 10 mM NAC, or 100 µM 2-APB, these Ca2+ transients were markedly diminished. These inhibitors also had corresponding inhibitory effects on Asc-induced rises in whole-cell currents. Pertussis toxin (PTX) preincubation blocked rises in Ca2+ influx. Microscopic analyses showed that after 4 days of exposure to 1 mM Asc cell viability fell by nearly 100% in both RB cell lines. Taken together, one of the effects underlying oxidative mediated Asc-induced WERI-Rb1 cytotoxicity stems from its promotion of Gi/o coupled GPCR mediated increases in intracellular Ca2+ influx through TRP channels. Therefore, designing drugs targeting TRP channel modulation may be a viable approach to increase the efficacy of chemotherapeutic treatment of RB. Furthermore, Asc may be indicated as a possible supportive agent in anti-cancer therapies.


Assuntos
Antioxidantes/uso terapêutico , Ácido Ascórbico/uso terapêutico , Neoplasias da Retina/tratamento farmacológico , Retinoblastoma/tratamento farmacológico , Canais de Potencial de Receptor Transitório/metabolismo , Antineoplásicos Fitogênicos , Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Cálcio/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Etoposídeo , Humanos , Estresse Oxidativo , Neoplasias da Retina/metabolismo , Retinoblastoma/metabolismo
4.
Int J Mol Sci ; 22(10)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069457

RESUMO

The nuclear thyroid hormone receptors (THRs) are key mediators of thyroid hormone function on the cellular level via modulation of gene expression. Two different genes encode THRs (THRA and THRB), and are pleiotropically involved in development, metabolism, and growth. The THRA1 and THRA2 isoforms, which result from alternative splicing of THRA, differ in their C-terminal ligand-binding domain (LBD). Most published disease-associated THRA variants are located in the LBD of THRA1 and impede triiodothyronine (T3) binding. This keeps the nuclear receptor in an inactive state and inhibits target gene expression. Here, we investigated a new dominant THRA variant (chr17:g.38,241,010A > G, GRCh37.13 | c.518A > G, NM_199334 | p.(E173G), NP_955366), which is located between the DNA- and ligand-binding domains and affects both splicing isoforms. Patients presented partially with hypothyroid (intellectual disability, motor developmental delay, brain atrophy, and constipation) and partially with hyperthyroid symptoms (tachycardia and behavioral abnormalities) to varying degrees. Functional characterization of THRA1p.(E173G) by reporter gene assays revealed increased transcriptional activity in contrast to THRA1(WT), unexpectedly revealing the first gain-of-function mutation found in THRA1. The THRA2 isoform does not bind T3 and antagonizes THRA1 action. Introduction of p.(E173G) into THRA2 increased its inhibitory effect on THRA1, which helps to explain the hypothyroid symptoms seen in our patients. We used protein structure models to investigate possible underlying pathomechanisms of this variant with a gain-of-antagonistic function and suggest that the p.(E173G) variant may have an influence on the dimerization domain of the nuclear receptor.


Assuntos
Genes erbA/genética , Receptores dos Hormônios Tireóideos/metabolismo , Doenças da Glândula Tireoide/genética , Adulto , Processamento Alternativo/genética , Família , Feminino , Mutação com Ganho de Função/genética , Expressão Gênica/genética , Genes erbA/fisiologia , Humanos , Hipotireoidismo/metabolismo , Mutação/genética , Linhagem , Isoformas de Proteínas/metabolismo , Receptores dos Hormônios Tireóideos/genética , Irmãos , Glândula Tireoide/metabolismo , Receptores alfa dos Hormônios Tireóideos/genética , Receptores beta dos Hormônios Tireóideos/genética , Hormônios Tireóideos/metabolismo
5.
Int J Mol Sci ; 21(4)2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32059383

RESUMO

The melanocortin 4 receptor (MC4R) is a key player in hypothalamic weight regulation and energy expenditure as part of the leptin-melanocortin pathway. Mutations in this G protein coupled receptor (GPCR) are the most common cause for monogenetic obesity, which appears to be mediated by changes in the anorectic action of MC4R via GS-dependent cyclic adenosine-monophosphate (cAMP) signaling as well as other signaling pathways. To study potential bias in the effects of MC4R mutations between the different signaling pathways, we investigated three major MC4R mutations: a GS loss-of-function (S127L) and a GS gain-of-function mutant (H158R), as well as the most common European single nucleotide polymorphism (V103I). We tested signaling of all four major G protein families plus extracellular regulated kinase (ERK) phosphorylation and ß-arrestin2 recruitment, using the two endogenous agonists, α- and ß-melanocyte stimulating hormone (MSH), along with a synthetic peptide agonist (NDP-α-MSH). The S127L mutation led to a full loss-of-function in all investigated pathways, whereas V103I and H158R were clearly biased towards the Gq/11 pathway when challenged with the endogenous ligands. These results show that MC4R mutations can cause vastly different changes in the various MC4R signaling pathways and highlight the importance of a comprehensive characterization of receptor mutations.


Assuntos
Mutação , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo , Transdução de Sinais/fisiologia , Sequência de Aminoácidos , AMP Cíclico/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Leptina/metabolismo , Ligantes , Melanocortinas/metabolismo , Modelos Teóricos , Obesidade/genética , Fosforilação , Polimorfismo de Nucleotídeo Único , Receptores Acoplados a Proteínas G/metabolismo , alfa-MSH/metabolismo
6.
Diabetes Obes Metab ; 21(5): 1168-1176, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30784161

RESUMO

AIMS: Glucose-dependent insulinotropic polypeptide (GIP) is an incretin hormone that augments insulin secretion in pancreatic ß-cells via its glucose-dependent insulinotropic polypeptide receptor (GIPR). Recent genome-wide association studies identified a single nucleotide variant (SNV) in the GIPR encoding gene (GIPR), rs1800437, that is associated with obesity and insulin resistance. In the present study, we tested whether GIPR variants contribute to obesity and disturb glucose homeostasis or diabetes in specific patient populations. MATERIALS AND METHODS: Exon sequencing of GIPR was performed in 164 children with obesity and insulin resistance and in 80 children with paediatric-onset diabetes of unknown origin. The Study of Health in Pomerania (SHIP) cohort, comprising 8320 adults, was screened for the GIPR variant Arg217Leu. GIPR variants were expressed in COS-7 cells and cAMP production was measured upon stimulation with GIP. Cell surface expression was determined by ELISA. Protein homology modelling of the GIPR variants was performed to extract three-dimensional information of the receptor. RESULTS: A heterozygous missense GIPR variant Arg217Leu (rs200485112) was identified in a patient of Asian ancestry. Functional characterization of Arg217Leu revealed reduced surface expression and signalling after GIP challenge. The homology model of the GIPR structure supports the observed functional relevance of Arg217Leu. CONCLUSION: In vitro functional studies and protein homology modelling indicate a potential relevance of the GIPR variant Arg217Leu in receptor function. The heterozygous variant displayed partial co-segregation with diabetes. Based on these findings, we suggest that GIPR variants may play a role in disturbed glucose homeostasis and may be of clinical relevance in homozygous patients.


Assuntos
Diabetes Mellitus Tipo 2/genética , Polimorfismo de Nucleotídeo Único , Receptores dos Hormônios Gastrointestinais/genética , Adolescente , Idade de Início , Substituição de Aminoácidos/genética , Animais , Arginina/genética , Células COS , Criança , Chlorocebus aethiops , Estudos de Coortes , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Frequência do Gene , Estudo de Associação Genômica Ampla , Alemanha/epidemiologia , Homozigoto , Humanos , Resistência à Insulina/genética , Leucina/genética , Masculino , Obesidade Infantil/complicações , Obesidade Infantil/epidemiologia , Obesidade Infantil/genética
7.
Cell Mol Life Sci ; 75(12): 2227-2239, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29290039

RESUMO

G-protein-coupled receptors (GPCRs) can constitute complexes with non-GPCR integral membrane proteins, while such interaction has not been demonstrated at a single molecule level so far. We here investigated the potential interaction between the thyrotropin receptor (TSHR) and the monocarboxylate transporter 8 (MCT8), a member of the major facilitator superfamily (MFS), using fluorescence cross-correlation spectroscopy (FCCS). Both the proteins are expressed endogenously on the basolateral plasma membrane of the thyrocytes and are involved in stimulation of thyroid hormone production and release. Indeed, we demonstrate strong interaction between both the proteins which causes a suppressed activation of Gq/11 by TSH-stimulated TSHR. Thus, we provide not only evidence for a novel interaction between the TSHR and MCT8, but could also prove this interaction on a single molecule level. Moreover, this interaction forces biased signaling at the TSHR. These results are of general interest for both the GPCR and the MFS research fields.


Assuntos
Transportadores de Ácidos Monocarboxílicos/metabolismo , Mapas de Interação de Proteínas , Receptores da Tireotropina/metabolismo , Animais , Células COS , Chlorocebus aethiops , Expressão Gênica , Células HEK293 , Humanos , Transportadores de Ácidos Monocarboxílicos/análise , Transportadores de Ácidos Monocarboxílicos/genética , Multimerização Proteica , Receptores da Tireotropina/análise , Receptores da Tireotropina/genética , Transdução de Sinais , Simportadores , Glândula Tireoide/metabolismo , Glândula Tireoide/patologia
8.
Int J Mol Sci ; 20(22)2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31703413

RESUMO

1) Background: Central congenital hypothyroidism (CCH) is a rare endocrine disorder that can be caused by mutations in the ß-subunit of thyrotropin (TSHB). The TSHB mutation C105Vfs114X leads to isolated thyroid-stimulating-hormone-(TSH)-deficiency and results in a severe phenotype. The aim of this study was to gain more insight into the underlying molecular mechanism and the functional effects of this mutation based on two assumptions: a) the three-dimensional (3D) structure of TSH should be modified with the C105V substitution, and/or b) whether the C-terminal modifications lead to signaling differences. 2) Methods: wild-type (WT) and different mutants of hTSH were generated in human embryonic kidney 293 cells (HEK293 cells) and TSH preparations were used to stimulate thyrotropin receptor (TSHR) stably transfected into follicular thyroid cancer cells (FTC133-TSHR cells) and transiently transfected into HEK293 cells. Functional characterization was performed by determination of Gs, mitogen activated protein kinase (MAPK) and Gq/11 activation. 3) Results: The patient mutation C105Vfs114X and further designed TSH mutants diminished cyclic adenosine monophosphate (cAMP) signaling activity. Surprisingly, MAPK signaling for all mutants was comparable to WT, while none of the mutants induced PLC activation. 4) Conclusion: We characterized the patient mutation C105Vfs114X concerning different signaling pathways. We identified a strong decrease of cAMP signaling induction and speculate that this could, in combination with diverse signaling regarding the other pathways, accounting for the patient's severe phenotype.


Assuntos
Hipotireoidismo Congênito , Sistema de Sinalização das MAP Quinases , Mutação , Receptores da Tireotropina , Sistemas do Segundo Mensageiro , Tireotropina Subunidade beta , Linhagem Celular Tumoral , Hipotireoidismo Congênito/genética , Hipotireoidismo Congênito/metabolismo , AMP Cíclico/genética , AMP Cíclico/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Domínios Proteicos , Receptores da Tireotropina/química , Receptores da Tireotropina/genética , Receptores da Tireotropina/metabolismo , Tireotropina Subunidade beta/química , Tireotropina Subunidade beta/genética , Tireotropina Subunidade beta/metabolismo
9.
BMC Pediatr ; 18(1): 278, 2018 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-30134862

RESUMO

BACKGROUND: Variation in genes of the leptinergic-melanocortinergic system influence both body weight and height. Because short normal stature (SNS) is characterized by reduced body height, delayed maturation and leanness, allelic variation of genes in this pathway are hypothesized to affect this common condition. METHODS: We analyzed the coding regions of LEP, MC4R, MRAP2 and BDNF in 185 children with SNS (height < 5th percentile) to search for non-synonymous and frameshift variants. For association studies (two-sided χ2-tests) population-based data sets (ExAC, EVS and KORA) were used. Cyclic AMP accumulation, cell surface expression, central expression and MAP kinase activation were assayed in vitro to determine the functional implications of identified variants. RESULTS: We detected eleven variants predicted to be protein-altering, four in MC4R, four in BDNF, and three in MRAP2. No variants were found in LEP. In vitro analysis implied reduced function for the MC4R variant p.Met215Ile. Loss-of-function is contrary to expectations based on obesity studies, and thus does not support that this variant is relevant for SNS. The minor SNP alleles at MC4R p.Val103Ile and BDNF p.Val66Met were nominally associated with SNS. CONCLUSION: Taken together, although genes of the leptinergic-melanocortinergic system are important for normal growth, our data do not support the involvement of rare mutations in LEP, MC4R, MRAP2 or BDNF in short normal stature.


Assuntos
Estatura/genética , Fator Neurotrófico Derivado do Encéfalo/genética , Mutação , Polimorfismo Genético , Receptor Tipo 4 de Melanocortina/genética , Proteínas Adaptadoras de Transdução de Sinal , Adolescente , Proteínas de Transporte/genética , Criança , Feminino , Mutação da Fase de Leitura , Expressão Gênica , Transtornos do Crescimento/genética , Humanos , Leptina/genética , Masculino , Receptor Tipo 4 de Melanocortina/ultraestrutura
11.
J Med Genet ; 51(6): 375-87, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24714694

RESUMO

BACKGROUND: NKX2-1 encodes a transcription factor with large impact on the development of brain, lung and thyroid. Germline mutations of NKX2-1 can lead to dysfunction and malformations of these organs. Starting from the largest coherent collection of patients with a suspected phenotype to date, we systematically evaluated frequency, quality and spectrum of phenotypic consequences of NKX2-1 mutations. METHODS: After identifying mutations by Sanger sequencing and array CGH, we comprehensively reanalysed the phenotype of affected patients and their relatives. We employed electrophoretic mobility shift assay (EMSA) to detect alterations of NKX2-1 DNA binding. Gene expression was monitored by means of in situ hybridisation and compared with the expression level of MBIP, a candidate gene presumably involved in the disorders and closely located in close genomic proximity to NKX2-1. RESULTS: Within 101 index patients, we detected 17 point mutations and 10 deletions. Neurological symptoms were the most consistent finding (100%), followed by lung affection (78%) and thyroidal dysfunction (75%). Novel symptoms associated with NKX2-1 mutations comprise abnormal height, bouts of fever and cardiac septum defects. In contrast to previous reports, our data suggest that missense mutations in the homeodomain of NKX2-1 not necessarily modify its DNA binding capacity and that this specific type of mutations may be associated with mild pulmonary phenotypes such as asthma. Two deletions did not include NKX2-1, but MBIP, whose expression spatially and temporarily coincides with NKX2-1 in early murine development. CONCLUSIONS: The high incidence of NKX2-1 mutations strongly recommends the routine screen for mutations in patients with corresponding symptoms. However, this analysis should not be confined to the exonic sequence alone, but should take advantage of affordable NGS technology to expand the target to adjacent regulatory sequences and the NKX2-1 interactome in order to maximise the yield of this diagnostic effort.


Assuntos
Doenças Genéticas Inatas , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Adolescente , Criança , Pré-Escolar , Hibridização Genômica Comparativa , Variações do Número de Cópias de DNA/genética , Ensaio de Desvio de Mobilidade Eletroforética , Feminino , Deleção de Genes , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/fisiopatologia , Humanos , Lactente , Recém-Nascido , Masculino , Fenótipo , Mutação Puntual/genética , Fator Nuclear 1 de Tireoide
12.
Int J Mol Sci ; 15(11): 20638-55, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25391046

RESUMO

The thyroid hormone derivative 3-iodothyronamine (3-T1AM) exerts metabolic effects in vivo that contradict known effects of thyroid hormones. 3-T1AM acts as a trace amine-associated receptor 1 (TAAR1) agonist and activates G(s) signaling in vitro. Interestingly, 3-T1AM-meditated in vivo effects persist in Taar1 knockout-mice indicating that further targets of 3-T1AM might exist. Here, we investigated another member of the TAAR family, the only scarcely studied mouse and human trace-amine-associated receptor 8 (Taar8b, TAAR8). By RT-qPCR and locked-nucleic-acid (LNA) in situ hybridization, Taar8b expression in different mouse tissues was analyzed. Functionally, we characterized TAAR8 and Taar8b with regard to cell surface expression and signaling via different G-protein-mediated pathways. Cell surface expression was verified by ELISA, and cAMP accumulation was quantified by AlphaScreen for detection of G(s) and/or G(i/o) signaling. Activation of G-proteins G(q/11) and G(12/13) was analyzed by reporter gene assays. Expression analyses revealed at most marginal Taar8b expression and no gender differences for almost all analyzed tissues. In heart, LNA-in situ hybridization demonstrated the absence of Taar8b expression. We could not identify 3-T1AM as a ligand for TAAR8 and Taar8b, but both receptors were characterized by a basal G(i/o) signaling activity, a so far unknown signaling pathway for TAARs.


Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Animais , Feminino , Expressão Gênica , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores Acoplados a Proteínas G/análise , Receptores Acoplados a Proteínas G/genética
13.
PLoS Genet ; 6(4): e1000916, 2010 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-20421936

RESUMO

Meta-analyses of population-based genome-wide association studies (GWAS) in adults have recently led to the detection of new genetic loci for obesity. Here we aimed to discover additional obesity loci in extremely obese children and adolescents. We also investigated if these results generalize by estimating the effects of these obesity loci in adults and in population-based samples including both children and adults. We jointly analysed two GWAS of 2,258 individuals and followed-up the best, according to lowest p-values, 44 single nucleotide polymorphisms (SNP) from 21 genomic regions in 3,141 individuals. After this DISCOVERY step, we explored if the findings derived from the extremely obese children and adolescents (10 SNPs from 5 genomic regions) generalized to (i) the population level and (ii) to adults by genotyping another 31,182 individuals (GENERALIZATION step). Apart from previously identified FTO, MC4R, and TMEM18, we detected two new loci for obesity: one in SDCCAG8 (serologically defined colon cancer antigen 8 gene; p = 1.85x10(-8) in the DISCOVERY step) and one between TNKS (tankyrase, TRF1-interacting ankyrin-related ADP-ribose polymerase gene) and MSRA (methionine sulfoxide reductase A gene; p = 4.84x10(-7)), the latter finding being limited to children and adolescents as demonstrated in the GENERALIZATION step. The odds ratios for early-onset obesity were estimated at approximately 1.10 per risk allele for both loci. Interestingly, the TNKS/MSRA locus has recently been found to be associated with adult waist circumference. In summary, we have completed a meta-analysis of two GWAS which both focus on extremely obese children and adolescents and replicated our findings in a large followed-up data set. We observed that genetic variants in or near FTO, MC4R, TMEM18, SDCCAG8, and TNKS/MSRA were robustly associated with early-onset obesity. We conclude that the currently known major common variants related to obesity overlap to a substantial degree between children and adults.


Assuntos
Peso Corporal/genética , Loci Gênicos , Genoma Humano , Obesidade/genética , Adolescente , Adulto , Idade de Início , Alelos , Índice de Massa Corporal , Criança , França/epidemiologia , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Alemanha/epidemiologia , Humanos , Obesidade/epidemiologia , Polimorfismo de Nucleotídeo Único
14.
J Biol Chem ; 286(45): 39623-31, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-21940628

RESUMO

Interaction and cross-talk of G-protein-coupled receptors (GPCRs) are of considerable interest because an increasing number of examples implicate a profound functional and physiological relevance of homo- or hetero-oligomeric GPCRs. The ghrelin (growth hormone secretagogue receptor (GHSR)) and melanocortin-3 (MC3R) receptors are both known to have orexigenic effects on the hypothalamic control of body weight. Because in vitro studies indicate heterodimerization of GHSR and MC3R, we investigated their functional interplay. Combined in situ hybridization and immunohistochemistry indicated that the vast majority of GHSR-expressing neurons in the arcuate nucleus also express MC3R. In vitro coexpression of MC3R and GHSR promoted enhanced melanocortin-induced intracellular cAMP accumulation compared with activation of MC3R in the absence of GHSR. In contrast, agonist-independent basal signaling activity and ghrelin-induced signaling of GHSR were impaired, most likely due to interaction with MC3R. By taking advantage of naturally occurring GHSR mutations and an inverse agonist for GHSR, we demonstrate that the observed enhanced MC3R signaling capability depends directly on the basal activity of GHSR. In conclusion, we demonstrate a paradigm-shifting example of GPCR heterodimerization allowing for mutually opposite functional influence of two hypothalamic receptors controlling body weight. We found that the agonist-independent active conformation of one GPCR can determine the signaling modalities of another receptor in a heterodimer. Our discovery also implies that mutations within one of two interacting receptors might affect both receptors and different pathways simultaneously. These findings uncover mechanisms of important relevance for pharmacological targeting of GPCR in general and hypothalamic body weight regulation in particular.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Multimerização Proteica/fisiologia , Receptor Tipo 3 de Melanocortina/metabolismo , Receptores de Grelina/metabolismo , Transdução de Sinais/fisiologia , Animais , Células COS , Chlorocebus aethiops , AMP Cíclico/genética , AMP Cíclico/metabolismo , Regulação da Expressão Gênica/fisiologia , Grelina/genética , Grelina/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Mutação , Proteínas do Tecido Nervoso/agonistas , Proteínas do Tecido Nervoso/genética , Receptor Tipo 3 de Melanocortina/agonistas , Receptor Tipo 3 de Melanocortina/genética , Receptores de Grelina/agonistas , Receptores de Grelina/genética
15.
Neuroendocrinology ; 95(4): 277-88, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22327910

RESUMO

The worldwide obesity epidemic is increasing, yet at this time, no long-acting and specific pharmaceutical therapies are available. Peripheral hormonal signals communicate metabolic status to the hypothalamus by activating their corresponding receptors in the arcuate nucleus (ARC). In this brain region, a variety of G protein-coupled receptors (GPCRs) are expressed that are potentially involved in weight regulation, but so far, the detailed function of most hypothalamic GPCRs is only partially understood. An important and underappreciated feature of GPCRs is the capacity for regulation via di- and heterodimerization. Increasing evidence implicates that heterodimerization of GPCRs results in profound functional consequences. Recently, we could demonstrate that interaction of the melanocortin 3 receptor (MC3R) and the growth hormone secretagogue receptor (GHSR)-1a results in a modulation of function in both receptors. Although the physiological role of GPCR-GPCR interaction in the hypothalamus is yet to be elucidated, this concept promises new avenues for investigation and understanding of hypothalamic functions dependent on GPCR signaling. Since GPCRs are important targets for drugs to combat many diseases, identification of heterodimers may be a prerequisite for highly specific drugs. Therefore, a detailed understanding of the mechanisms and their involvement in weight regulation is necessary. Fundamental to this understanding is the interplay of GPCR-GPCR in the hypothalamic nuclei in energy metabolism. In this review, we summarize the current knowledge on melanocortin receptors and GHSR-1a in hypothalamic weight regulation, especially as they pertain to possible drug targets. Furthermore, we include available evidence for the participation and significance of GPCR dimerization.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Peso Corporal/fisiologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Receptor Tipo 3 de Melanocortina/metabolismo , Receptor Tipo 4 de Melanocortina/metabolismo , Receptores de Grelina/metabolismo , Animais , Regulação do Apetite/fisiologia , Núcleo Arqueado do Hipotálamo/anatomia & histologia , Núcleo Arqueado do Hipotálamo/fisiologia , Humanos , Modelos Biológicos , Núcleo Hipotalâmico Paraventricular/anatomia & histologia , Núcleo Hipotalâmico Paraventricular/fisiologia , Multimerização Proteica/fisiologia , Receptor Tipo 3 de Melanocortina/fisiologia , Receptor Tipo 4 de Melanocortina/fisiologia , Receptores de Grelina/fisiologia
16.
Handb Exp Pharmacol ; (209): 47-75, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22249810

RESUMO

Obesity is one of the most challenging health problems worldwide. Over the past few decades, our knowledge concerning mechanisms of weight regulation has increased tremendously leading to the identification of the leptin-melanocortin pathway. The filling level of energy stores is signaled to the brain, and the information is integrated by hypothalamic nuclei, resulting in a well-orchestrated response to food intake and energy expenditure to ensure constant body weight. One of the key players in this system is proopiomelanocortin (POMC), a precursor of a variety of neuropeptides. POMC-derived alpha- and beta-MSH play an important role in energy homeostasis by activating melanocortin receptors expressed in the arcuate nucleus (MC3R) and in the nucleus paraventricularis (MC4R). Activation of these two G protein-coupled receptors is antagonized by agouti-related peptide (AgRP). Naturally occurring mutations in this system were identified in patients suffering from common obesity as well as in patients demonstrating a phenotype of severe early-onset obesity, adrenal insufficiency, red hair, and pale skin. Detailed understanding of the complex system of POMC-AgRP-MC3R-MC4R and their interaction with other hypothalamic as well as peripheral signals is a prerequisite to combat the obesity epidemic.


Assuntos
Proteína Relacionada com Agouti/metabolismo , Hipotálamo/metabolismo , Hormônios Estimuladores de Melanócitos/metabolismo , Pró-Opiomelanocortina/metabolismo , Transdução de Sinais , Animais , Peso Corporal , Ingestão de Alimentos , Metabolismo Energético , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/fisiopatologia , Hipotálamo/fisiopatologia , Mutação , Obesidade/metabolismo , Obesidade/fisiopatologia , Pró-Opiomelanocortina/genética , Receptor Tipo 3 de Melanocortina/genética , Receptor Tipo 3 de Melanocortina/metabolismo , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo
17.
PLoS Genet ; 5(10): e1000694, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19851442

RESUMO

The INSIG2 rs7566605 polymorphism was identified for obesity (BMI> or =30 kg/m(2)) in one of the first genome-wide association studies, but replications were inconsistent. We collected statistics from 34 studies (n = 74,345), including general population (GP) studies, population-based studies with subjects selected for conditions related to a better health status ('healthy population', HP), and obesity studies (OB). We tested five hypotheses to explore potential sources of heterogeneity. The meta-analysis of 27 studies on Caucasian adults (n = 66,213) combining the different study designs did not support overall association of the CC-genotype with obesity, yielding an odds ratio (OR) of 1.05 (p-value = 0.27). The I(2) measure of 41% (p-value = 0.015) indicated between-study heterogeneity. Restricting to GP studies resulted in a declined I(2) measure of 11% (p-value = 0.33) and an OR of 1.10 (p-value = 0.015). Regarding the five hypotheses, our data showed (a) some difference between GP and HP studies (p-value = 0.012) and (b) an association in extreme comparisons (BMI> or =32.5, 35.0, 37.5, 40.0 kg/m(2) versus BMI<25 kg/m(2)) yielding ORs of 1.16, 1.18, 1.22, or 1.27 (p-values 0.001 to 0.003), which was also underscored by significantly increased CC-genotype frequencies across BMI categories (10.4% to 12.5%, p-value for trend = 0.0002). We did not find evidence for differential ORs (c) among studies with higher than average obesity prevalence compared to lower, (d) among studies with BMI assessment after the year 2000 compared to those before, or (e) among studies from older populations compared to younger. Analysis of non-Caucasian adults (n = 4889) or children (n = 3243) yielded ORs of 1.01 (p-value = 0.94) or 1.15 (p-value = 0.22), respectively. There was no evidence for overall association of the rs7566605 polymorphism with obesity. Our data suggested an association with extreme degrees of obesity, and consequently heterogeneous effects from different study designs may mask an underlying association when unaccounted for. The importance of study design might be under-recognized in gene discovery and association replication so far.


Assuntos
Estudo de Associação Genômica Ampla/normas , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Obesidade/genética , Projetos de Pesquisa/normas , Adolescente , Adulto , Feminino , Genética Populacional , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/epidemiologia , Polimorfismo Genético , Adulto Jovem
18.
Horm Res Paediatr ; 95(2): 177-192, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34351307

RESUMO

BACKGROUND: The increasing number of obese children and adolescence is a major problem in health-care systems. Currently, the gold standard for the treatment of these patients with obesity is a multicomponent lifestyle intervention. Unfortunately, this strategy is not leading to a substantial and long-lasting weight loss in the majority of patients. This is the reason why there is an urgent need to establish new treatment strategies for children and adolescents with obesity to reduce the risk for the development of any comorbidities like cardiovascular diseases or diabetes mellitus type 2. SUMMARY: In this review, we outline available pharmacological therapeutic options for children and compare the available study data with the outcome of conservative treatment approaches. KEY MESSAGES: We discussed, in detail, how knowledge about underlying molecular mechanisms might support the identification of effective antiobesity drugs in the future and in which way this might modulate current treatment strategies to support children and adolescence with obesity to lose body weight.


Assuntos
Fármacos Antiobesidade , Diabetes Mellitus Tipo 2 , Obesidade Infantil , Adolescente , Fármacos Antiobesidade/uso terapêutico , Peso Corporal , Criança , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos , Estilo de Vida , Obesidade Infantil/tratamento farmacológico
19.
Exp Clin Endocrinol Diabetes ; 130(2): 134-140, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34352913

RESUMO

The monocarboxylate transporter 8 (MCT8) is a specific thyroid hormone transporter and plays an essential role in fetal development. Inactivating mutations in the MCT8 encoding gene SLC16A2 (solute carrier family 16, member 2) lead to the Allan-Herndon-Dudley syndrome, a condition presenting with severe endocrinological and neurological phenotypes. However, the cellular distribution pattern and dynamic expression profile are still not well known for early human neural development. OBJECTIVE: Development and characterization of fluorescent MCT8 reporters that would permit live-cell monitoring of MCT8 protein expression in vitro in human induced pluripotent stem cell (hiPSC)-derived cell culture models. METHODS: A tetracysteine (TC) motif was introduced into the human MCT8 sequence at four different positions as binding sites for fluorescent biarsenical dyes. Human Embryonic Kidney 293 cells were transfected and stained with fluorescein-arsenical hairpin-binder (FlAsH). Counterstaining with specific MCT8 antibody was performed. Triiodothyronine (T3) uptake was indirectly measured with a T3 responsive luciferase-based reporter gene assay in Madin-Darby Canine Kidney 1 cells for functional characterization. RESULTS: FlAsH staining and antibody counterstaining of all four constructs showed cell membrane expression of all MCT8 constructs. The construct with the tag after the first start codon demonstrated comparable T3 uptake to the MCT8 wildtype. CONCLUSION: Our data indicate that introduction of a TC-tag directly after the first start codon generates a MCT8 reporter with suitable characteristics for live-cell monitoring of MCT8 expression. One promising future application will be generation of stable hiPSC MCT8 reporter lines to characterize MCT8 expression patterns during in vitro neuronal development.


Assuntos
Expressão Gênica , Transportadores de Ácidos Monocarboxílicos , Simportadores , Fluoresceína , Corantes Fluorescentes , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas , Coloração e Rotulagem
20.
Biomolecules ; 12(8)2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-36009013

RESUMO

Melanocortin 4 receptor (MC4R) is part of the leptin-melanocortin pathway and plays an essential role in mediating energy homeostasis. Mutations in the MC4R are the most frequent monogenic cause for obesity. Due to increasing numbers of people with excess body weight, the MC4R has become a target of interest in the search of treatment options. We have previously reported that the MC4R forms homodimers, affecting receptor Gs signaling properties. Recent studies introducing setmelanotide, a novel synthetic MC4R agonist, suggest a predominant role of the Gq/11 pathway regarding weight regulation. In this study, we analyzed effects of inhibiting homodimerization on Gq/11 signaling using previously reported MC4R/CB1R chimeras. NanoBRETTM studies to determine protein-protein interaction were conducted, confirming decreased homodimerization capacities of chimeric receptors in HEK293 cells. Gq/11 signaling of chimeric receptors was analyzed using luciferase-based reporter gene (NFAT) assays. Results demonstrate an improvement of alpha-MSH-induced NFAT signaling of chimeras, reaching the level of setmelanotide signaling at wild-type MC4R (MC4R-WT). In summary, our study shows that inhibiting homodimerization has a setmelanotide-like effect on Gq/11 signaling, with chimeric receptors presenting increased potency compared to MC4R-WT. These findings indicate the potential of inhibiting MC4R homodimerization as a therapeutic target to treat obesity.


Assuntos
Receptor Tipo 4 de Melanocortina , alfa-MSH , Proteínas de Transporte , Células HEK293 , Humanos , Obesidade/metabolismo , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo , alfa-MSH/análogos & derivados , alfa-MSH/metabolismo , alfa-MSH/farmacologia , alfa-MSH/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA