Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chem Soc Rev ; 53(12): 6445-6510, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38747901

RESUMO

Material-binding peptides (MBPs) have emerged as a diverse and innovation-enabling class of peptides in applications such as plant-/human health, immobilization of catalysts, bioactive coatings, accelerated polymer degradation and analytics for micro-/nanoplastics quantification. Progress has been fuelled by recent advancements in protein engineering methodologies and advances in computational and analytical methodologies, which allow the design of, for instance, material-specific MBPs with fine-tuned binding strength for numerous demands in material science applications. A genetic or chemical conjugation of second (biological, chemical or physical property-changing) functionality to MBPs empowers the design of advanced (hybrid) materials, bioactive coatings and analytical tools. In this review, we provide a comprehensive overview comprising naturally occurring MBPs and their function in nature, binding properties of short man-made MBPs (<20 amino acids) mainly obtained from phage-display libraries, and medium-sized binding peptides (20-100 amino acids) that have been reported to bind to metals, polymers or other industrially produced materials. The goal of this review is to provide an in-depth understanding of molecular interactions between materials and material-specific binding peptides, and thereby empower the use of MBPs in material science applications. Protein engineering methodologies and selected examples to tailor MBPs toward applications in agriculture with a focus on plant health, biocatalysis, medicine and environmental monitoring serve as examples of the transformative power of MBPs for various industrial applications. An emphasis will be given to MBPs' role in detecting and quantifying microplastics in high throughput, distinguishing microplastics from other environmental particles, and thereby assisting to close an analytical gap in food safety and monitoring of environmental plastic pollution. In essence, this review aims to provide an overview among researchers from diverse disciplines in respect to material-(specific) binding of MBPs, protein engineering methodologies to tailor their properties to application demands, re-engineering for material science applications using MBPs, and thereby inspire researchers to employ MBPs in their research.


Assuntos
Biocatálise , Peptídeos , Peptídeos/química , Peptídeos/metabolismo , Humanos , Microplásticos/química , Microplásticos/metabolismo , Plantas/metabolismo , Plantas/química , Engenharia de Proteínas
2.
Angew Chem Int Ed Engl ; 63(13): e202317419, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38251394

RESUMO

A typical component of polymer waste is polystyrene (PS) used in numerous applications, but degraded only slowly in the environment due to its hydrophobic properties. To increase the reactivity of polystyrene, polar groups need to be introduced. Here, biohybrid catalysts based on the engineered anchor peptide LCI_F16C are presented, which are capable of attaching to polystyrene microparticles and hydroxylating benzylic C-H bonds in polystyrene microparticles using commercially available oxone as oxidant. LCI peptides achieve a dense surface coverage of PS through monolayer formation within minutes in aqueous solutions at ambient temperature. The catalytically active cobalt cofactor Co-L1 or Co-L2 with a modified NNNN macrocyclic TACD ligand (TACD=1,4,7,10-tetraazacyclododecane) is covalently bound to the anchor peptide LCI through a maleimide linker. Compared to the free cofactors, a 12- to 15-fold improvement in catalytic activity using biohybrid catalysts based on LCI_F16C was observed.


Assuntos
Cobalto , Poliestirenos , Cobalto/química , Poliestirenos/química , Oxirredução , Polímeros/química , Peptídeos/química
3.
Int J Mol Sci ; 23(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35163294

RESUMO

Understanding the mechanisms of modulators' action on enzymes is crucial for optimizing and designing pharmaceutical substances. The acute inflammatory response, in particular, is regulated mainly by a disintegrin and metalloproteinase (ADAM) 17. ADAM17 processes several disease mediators such as TNFα and APP, releasing their soluble ectodomains (shedding). A malfunction of this process leads to a disturbed inflammatory response. Chemical protease inhibitors such as TAPI-1 were used in the past to inhibit ADAM17 proteolytic activity. However, due to ADAM17's broad expression and activity profile, the development of active-site-directed ADAM17 inhibitor was discontinued. New 'exosite' (secondary substrate binding site) inhibitors with substrate selectivity raised the hope of a substrate-selective modulation as a promising approach for inflammatory disease therapy. This work aimed to develop a high-throughput screen for potential ADAM17 modulators as therapeutic drugs. By combining experimental and in silico methods (structural modeling and docking), we modeled the kinetics of ADAM17 inhibitor. The results explain ADAM17 inhibition mechanisms and give a methodology for studying selective inhibition towards the design of pharmaceutical substances with higher selectivity.


Assuntos
Proteína ADAM17/antagonistas & inibidores , Proteína ADAM17/efeitos dos fármacos , Proteína ADAM17/metabolismo , Proteínas ADAM/metabolismo , Sítios de Ligação/efeitos dos fármacos , Domínio Catalítico/efeitos dos fármacos , Simulação por Computador , Avaliação Pré-Clínica de Medicamentos/métodos , Células HEK293 , Ensaios de Triagem em Larga Escala/métodos , Humanos , Cinética , Inibidores de Proteases/farmacologia , Especificidade por Substrato/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA