Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Biophys J ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38877702

RESUMO

Plasma membrane fluidity is an important phenotypic feature that regulates the diffusion, function, and folding of transmembrane and membrane-associated proteins. In bacterial cells, variations in membrane fluidity are known to affect respiration, transport, and antibiotic resistance. Membrane fluidity must therefore be tightly regulated to adapt to environmental variations and stresses such as temperature fluctuations or osmotic shocks. Quantitative investigation of bacterial membrane fluidity has been, however, limited due to the lack of available tools, primarily due to the small size and membrane curvature of bacteria that preclude most conventional analysis methods used in eukaryotes. Here, we develop an assay based on total internal reflection-fluorescence correlation spectroscopy (TIR-FCS) to directly measure membrane fluidity in live bacteria via the diffusivity of fluorescent membrane markers. With simulations validated by experiments, we could determine how the small size, high curvature, and geometry of bacteria affect diffusion measurements and correct subsequent measurements for unbiased diffusion coefficient estimation. We used this assay to quantify the fluidity of the cytoplasmic membranes of the Gram-positive bacteria Bacillus subtilis (rod-shaped) and Staphylococcus aureus (coccus) at high (37°C) and low (20°C) temperatures in a steady state and in response to a cold shock, caused by a shift from high to low temperature. The steady-state fluidity was lower at 20°C than at 37°C, yet differed between B. subtilis and S. aureus at 37°C. Upon cold shock, the membrane fluidity decreased further below the steady-state fluidity at 20°C and recovered within 30 min in both bacterial species. Our minimally invasive assay opens up exciting perspectives for the study of a wide range of phenomena affecting the bacterial membrane, from disruption by chemicals or antibiotics to viral infection or change in nutrient availability.

2.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34244425

RESUMO

Virus infection causes major rearrangements in the subcellular architecture of eukaryotes, but its impact in prokaryotic cells was much less characterized. Here, we show that infection of the bacterium Bacillus subtilis by bacteriophage SPP1 leads to a hijacking of host replication proteins to assemble hybrid viral-bacterial replisomes for SPP1 genome replication. Their biosynthetic activity doubles the cell total DNA content within 15 min. Replisomes operate at several independent locations within a single viral DNA focus positioned asymmetrically in the cell. This large nucleoprotein complex is a self-contained compartment whose boundaries are delimited neither by a membrane nor by a protein cage. Later during infection, SPP1 procapsids localize at the periphery of the viral DNA compartment for genome packaging. The resulting DNA-filled capsids do not remain associated to the DNA transactions compartment. They bind to phage tails to build infectious particles that are stored in warehouse compartments spatially independent from the viral DNA. Free SPP1 structural proteins are recruited to the dynamic phage-induced compartments following an order that recapitulates the viral particle assembly pathway. These findings show that bacteriophages restructure the crowded host cytoplasm to confine at different cellular locations the sequential processes that are essential for their multiplication.


Assuntos
Bacillus subtilis/virologia , Compartimento Celular , Viroses/patologia , Bacillus subtilis/ultraestrutura , Bacteriófagos/fisiologia , Bacteriófagos/ultraestrutura , Capsídeo/metabolismo , Replicação do DNA , DNA Viral/biossíntese , DNA Polimerase Dirigida por DNA , Interações Hospedeiro-Patógeno , Complexos Multienzimáticos , Fatores de Tempo , Vírion/metabolismo
3.
Immunology ; 150(2): 199-212, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27716898

RESUMO

Cancer-germline genes in both humans and mice have been shown to encode antigens susceptible to targeting by cytotoxic CD8 T effector cells (CTL). We analysed the ability of CTL to kill different tumour cell lines expressing the same cancer-germline gene P1A (Trap1a). We previously demonstrated that CTL expressing a T-cell receptor specific for the P1A35-43 peptide associated with H-2Ld , although able to induce regression of P1A-expressing P815 mastocytoma cells, were much less effective against P1A-expressing melanoma cells. Here, we analysed parameters of the in vitro interaction between P1A-specific CTL and mastocytoma or melanoma cells expressing similar levels of the P1A gene and of surface H-2Ld . The mastocytoma cells were more sensitive to cytolysis than the melanoma cells in vitro. Analysis by video-microscopy of early events required for target cell killing showed that similar patterns of increase in cytoplasmic Ca2+ concentration ([Ca2+ ]i) were induced by both types of P1A-expressing tumour cells. However, the use of CTL expressing a fluorescent granzyme B (GZMB-Tom) showed a delay in the migration of cytotoxic granules to the tumour interaction site, as well as a partially deficient GZMB-Tom exocytosis in response to the melanoma cells. Among surface molecules possibly affecting tumour-CTL interactions, the mastocytoma cells were found to express intercellular adhesion molecule-1, the ligand for LFA-1, which was not detected on the melanoma cells.


Assuntos
Antígenos de Neoplasias/metabolismo , Exocitose , Mastocitoma/imunologia , Melanoma/imunologia , Fragmentos de Peptídeos/metabolismo , Vesículas Secretórias/metabolismo , Linfócitos T Citotóxicos/imunologia , Animais , Antígenos de Neoplasias/genética , Sinalização do Cálcio , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Antígeno de Histocompatibilidade H-2D/metabolismo , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Ativação Linfocitária , Antígeno-1 Associado à Função Linfocitária/metabolismo , Camundongos , Especificidade do Receptor de Antígeno de Linfócitos T
4.
PLoS Comput Biol ; 9(9): e1003245, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086124

RESUMO

We introduce a series of experimental procedures enabling sensitive calcium monitoring in T cell populations by confocal video-microscopy. Tracking and post-acquisition analysis was performed using Methods for Automated and Accurate Analysis of Cell Signals (MAAACS), a fully customized program that associates a high throughput tracking algorithm, an intuitive reconnection routine and a statistical platform to provide, at a glance, the calcium barcode of a population of individual T-cells. Combined with a sensitive calcium probe, this method allowed us to unravel the heterogeneity in shape and intensity of the calcium response in T cell populations and especially in naive T cells, which display intracellular calcium oscillations upon stimulation by antigen presenting cells.


Assuntos
Cálcio/metabolismo , Transdução de Sinais , Software , Linfócitos T/metabolismo , Animais , Células COS , Chlorocebus aethiops , Humanos , Sondas Moleculares
5.
Sci Rep ; 13(1): 15136, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37704668

RESUMO

The human pathogenic bacteria Bacillus cereus, Bacillus anthracis and the entomopathogenic Bacillus thuringiensis form spores encased in a protein coat surrounded by a balloon-like exosporium. These structures mediate spore interactions with its environment, including the host immune system, control the transit of molecules that trigger germination and thus are essential for the spore life cycle. Formation of the coat and exosporium has been traditionally visualized by transmission electronic microscopy on fixed cells. Recently, we showed that assembly of the exosporium can be directly observed in live B. cereus cells by super resolution-structured illumination microscopy (SR-SIM) using the membrane MitoTrackerGreen (MTG) dye. Here, we demonstrate that the different steps of coat formation can also be visualized by SR-SIM using MTG and SNAP-cell TMR-star dyes during B. cereus sporulation. We used these markers to characterize a subpopulation of engulfment-defective B. cereus cells that develops at a suboptimal sporulation temperature. Importantly, we predicted and confirmed that synthesis and accumulation of coat material, as well as synthesis of the σK-dependent protein BxpB, occur in cells arrested during engulfment. These results suggest that, unlike the well-studied model organism Bacillus subtilis, the activity of σK is not strictly linked to the state of forespore development in B. cereus.


Assuntos
Bacillus anthracis , Cactaceae , Humanos , Bacillus cereus , Aeronaves , Bacillus subtilis , Corantes , Microscopia Eletrônica de Transmissão
6.
Opt Express ; 19(13): 12562-8, 2011 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-21716497

RESUMO

Performing label free coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) in endoscope imaging is a challenge, with huge potential clinical benefit. To date, this goal has remained inaccessible because of the inherent coherent Raman noise that is generated in the fiber itself. By developing double-clad hollow core photonic crystal fiber, we demonstrate coherent anti-Stokes Raman scattering and stimulated Raman scattering in an 'endoscope-like' scheme. Both the excitation beams and the collected CARS and SRS signals travel through the same fiber. No CARS and SRS signals are generated within the hollow core fiber even for temporally overlapping pump and Stokes beams, leading to excellent image quality. The CARS and SRS signals generated in the sample are coupled back into a high numerical aperture multimode cladding surrounding the central photonic crystal cladding. We demonstrate this scheme by imaging molecular vibrational bonds of organic crystal deposited on a glass surface.


Assuntos
Cristalização/métodos , Endoscópios , Microscopia/métodos , Fibras Ópticas , Análise Espectral Raman/métodos , Artefatos , Biologia Celular/instrumentação , Desenho de Equipamento , Microscopia Eletrônica de Varredura , Dinâmica não Linear , Polissacarídeo-Liases/química , Vibração
7.
mSystems ; 6(6): e0101721, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34846166

RESUMO

How cells control their shape and size is a fundamental question of biology. In most bacteria, cell shape is imposed by the peptidoglycan (PG) polymeric meshwork that surrounds the cell. Thus, bacterial cell morphogenesis results from the coordinated action of the proteins assembling and degrading the PG shell. Remarkably, during steady-state growth, most bacteria maintain a defined shape along generations, suggesting that error-proof mechanisms tightly control the process. In the rod-shaped model for the Gram-positive bacterium Bacillus subtilis, the average cell length varies as a function of the growth rate, but the cell diameter remains constant throughout the cell cycle and across growth conditions. Here, in an attempt to shed light on the cellular circuits controlling bacterial cell width, we developed a screen to identify genetic determinants of cell width in B. subtilis. Using high-content screening (HCS) fluorescence microscopy and semiautomated measurement of single-cell dimensions, we screened a library of ∼4,000 single knockout mutants. We identified 13 mutations significantly altering cell diameter, in genes that belong to several functional groups. In particular, our results indicate that metabolism plays a major role in cell width control in B. subtilis. IMPORTANCE Bacterial shape is primarily dictated by the external cell wall, a vital structure that, as such, is the target of countless antibiotics. Our understanding of how bacteria synthesize and maintain this structure is therefore a cardinal question for both basic and applied research. Bacteria usually multiply from generation to generation while maintaining their progenies with rigorously identical shapes. This implies that the bacterial cells constantly monitor and maintain a set of parameters to ensure this perpetuation. Here, our study uses a large-scale microscopy approach to identify at the whole-genome level, in a model bacterium, the genes involved in the control of one of the most tightly controlled cellular parameters, the cell width.

8.
Methods Mol Biol ; 2101: 135-145, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31879902

RESUMO

Total internal reflection fluorescence (TIRF) microscopy allows the visualization of the dynamic membrane-associated actin-like MreB filaments in live bacterial cells with high temporal resolution. This chapter describes computerized analysis methods to quantitatively characterize the dynamics and morphological properties of MreB assemblies. These include how to (1) segment bacterial cells, (2) perform single-particle tracking (SPT) of MreB filamentous structures, (3) classify their dynamic modes using mean squared displacement (MSD) analysis, and (4) measure their dimensions and orientation.


Assuntos
Proteínas de Bactérias/química , Microscopia de Fluorescência , Imagem Individual de Molécula , Actinas/química , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Microscopia de Fluorescência/métodos , Imagem Individual de Molécula/métodos , Imagem com Lapso de Tempo
9.
Methods Mol Biol ; 2101: 123-133, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31879901

RESUMO

MreB proteins are actin homologs present in nonspherical bacteria. They assemble into membrane-associated discrete filamentous structures that exhibit different dynamic behaviors along the bacterial sidewalls. Total internal reflection fluorescence (TIRF) microscopy, a sensitive method for studying molecular events at cell surfaces with high contrast and temporal resolution, is a method of choice to characterize the localization and dynamics of cortical MreB assemblies in vivo. This chapter describes the methods for visualizing fluorescently tagged MreB proteins in live Bacillus subtilis cells. We detail how to (1) grow B. subtilis strains for reproducible TIRF observations, (2) immobilize cells on agarose pads and (3) in CellASIC® microfluidic plates, and (4) acquire TIRF images and time lapses.


Assuntos
Proteínas de Bactérias/química , Proteínas do Citoesqueleto/química , Proteínas de Membrana/química , Microscopia de Fluorescência , Imagem Individual de Molécula , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas de Membrana/metabolismo , Microfluídica/instrumentação , Microfluídica/métodos , Microscopia de Fluorescência/métodos , Imagem Individual de Molécula/métodos
10.
mBio ; 11(1)2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32071272

RESUMO

Metabolic turnover of mRNA is fundamental to the control of gene expression in all organisms, notably in fast-adapting prokaryotes. In many bacteria, RNase Y initiates global mRNA decay via an endonucleolytic cleavage, as shown in the Gram-positive model organism Bacillus subtilis This enzyme is tethered to the inner cell membrane, a pseudocompartmentalization coherent with its task of initiating mRNA cleavage/maturation of mRNAs that are translated at the cell periphery. Here, we used total internal reflection fluorescence microscopy (TIRFm) and single-particle tracking (SPT) to visualize RNase Y and analyze its distribution and dynamics in living cells. We find that RNase Y diffuses rapidly at the membrane in the form of dynamic short-lived foci. Unlike RNase E, the major decay-initiating RNase in Escherichia coli, the formation of foci is not dependent on the presence of RNA substrates. On the contrary, RNase Y foci become more abundant and increase in size following transcription arrest, suggesting that they do not constitute the most active form of the nuclease. The Y-complex of three proteins (YaaT, YlbF, and YmcA) has previously been shown to play an important role for RNase Y activity in vivo We demonstrate that Y-complex mutations have an effect similar to but much stronger than that of depletion of RNA in increasing the number and size of RNase Y foci at the membrane. Our data suggest that the Y-complex shifts the assembly status of RNase Y toward fewer and smaller complexes, thereby increasing cleavage efficiency of complex substrates like polycistronic mRNAs.IMPORTANCE All living organisms must degrade mRNA to adapt gene expression to changing environments. In bacteria, initiation of mRNA decay generally occurs through an endonucleolytic cleavage. In the Gram-positive model organism Bacillus subtilis and probably many other bacteria, the key enzyme for this task is RNase Y, which is anchored at the inner cell membrane. While this pseudocompartmentalization appears coherent with translation occurring primarily at the cell periphery, our knowledge on the distribution and dynamics of RNase Y in living cells is very scarce. Here, we show that RNase Y moves rapidly along the membrane in the form of dynamic short-lived foci. These foci become more abundant and increase in size following transcription arrest, suggesting that they do not constitute the most active form of the nuclease. This contrasts with RNase E, the major decay-initiating RNase in E. coli, where it was shown that formation of foci is dependent on the presence of RNA substrates. We also show that a protein complex (Y-complex) known to influence the specificity of RNase Y activity in vivo is capable of shifting the assembly status of RNase Y toward fewer and smaller complexes. This highlights fundamental differences between RNase E- and RNase Y-based degradation machineries.


Assuntos
Bacillus subtilis/enzimologia , Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Estabilidade de RNA/fisiologia , Ribonucleases/metabolismo , Bacillus subtilis/citologia , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Endorribonucleases , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Microscopia de Fluorescência , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Ribonucleases/genética
12.
Opt Express ; 17(5): 3490-9, 2009 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-19259187

RESUMO

Thin nanostructured metal films allow to control radiative and non-radiative losses of surface plasmon polariton modes without changing their group velocities. This effect is studied in plasmonic waveguides made of thin gold films drilled with very narrow slits and deposited on a GaAs substrate. The analysis is supported by high-resolution angle-resolved transmission measurements and rigorous electromagnetic calculations. We show that the excitation of air/gold and gold/GaAs surface waves leads to Fano-type resonances with specific light localization into the slits. As a result, gold/GaAs surface waves induce a modulation of radiative and non-radiative losses of air/gold surface waves. The minimum and maximum of the Fano-type resonance introduce two propagation regimes. In the radiative propagation regime, the losses due to the absorption are negligible, whereas an efficient inhibition of free-space coupling is demonstrated in low-loss propagation regime.

13.
mBio ; 10(1)2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30696741

RESUMO

The actin-like MreB protein is a key player of the machinery controlling the elongation and maintenance of the cell shape of most rod-shaped bacteria. This protein is known to be highly dynamic, moving along the short axis of cells, presumably reflecting the movement of cell wall synthetic machineries during the enzymatic assembly of the peptidoglycan mesh. The ability of MreB proteins to form polymers is not debated, but their structure, length, and conditions of establishment have remained unclear and the subject of conflicting reports. Here we analyze various strains of Bacillussubtilis, the model for Gram-positive bacteria, and we show that MreB forms subdiffraction-limited, less than 200 nm-long nanofilaments on average during active growth, while micron-long filaments are a consequence of artificial overaccumulation of the protein. Our results also show the absence of impact of the size of the filaments on their speed, orientation, and other dynamic properties conferring a large tolerance to B. subtilis toward the levels and consequently the lengths of MreB polymers. Our data indicate that the density of mobile filaments remains constant in various strains regardless of their MreB levels, suggesting that another factor determines this constant.IMPORTANCE The construction of the bacterial cell envelope is a fundamental topic, as it confers its integrity to bacteria and is consequently the target of numerous antibiotics. MreB is an essential protein suspected to regulate the cell wall synthetic machineries. Despite two decades of study, its localization remains the subject of controversies, its description ranging from helical filaments spanning the entire cell to small discrete entities. The true structure of these filaments is important because it impacts the model describing how the machineries building the cell wall are associated, how they are coordinated at the scale of the entire cell, and how MreB mediates this regulation. Our results shed light on this debate, revealing the size of native filaments in B. subtilis during growth. They argue against models where MreB filament size directly affects the speed of synthesis of the cell wall and where MreB would coordinate distant machineries along the side wall.


Assuntos
Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Citoesqueleto/metabolismo , Multimerização Proteica , Transporte Proteico
14.
Front Immunol ; 9: 2864, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30564247

RESUMO

T cell activation is initiated upon ligand engagement of the T cell receptor (TCR) and costimulatory receptors. The CD28 molecule acts as a major costimulatory receptor in promoting full activation of naive T cells. However, despite extensive studies, why naive T cell activation requires concurrent stimulation of both the TCR and costimulatory receptors remains poorly understood. Here, we explore this issue by analyzing calcium response as a key early signaling event to elicit T cell activation. Experiments using mouse naive CD4+ T cells showed that engagement of the TCR or CD28 with the respective cognate ligand was able to trigger a rise in fluctuating calcium mobilization levels, as shown by the frequency and average response magnitude of the reacting cells compared with basal levels occurred in unstimulated cells. The engagement of both TCR and CD28 enabled a further increase of these two metrics. However, such increases did not sufficiently explain the importance of the CD28 pathways to the functionally relevant calcium responses in T cell activation. Through the autocorrelation analysis of calcium time series data, we found that combined but not separate TCR and CD28 stimulation significantly prolonged the average decay time (τ) of the calcium signal amplitudes determined with the autocorrelation function, compared with its value in unstimulated cells. This increasement of decay time (τ) uniquely characterizes the fluctuating calcium response triggered by concurrent stimulation of TCR and CD28, as it could not be achieved with either stronger TCR stimuli or by co-engaging both TCR and LFA-1, and likely represents an important feature of competent early signaling to provoke efficient T cell activation. Our work has thus provided new insights into the interplay between the TCR and CD28 early signaling pathways critical to trigger naive T cell activation.


Assuntos
Antígenos CD28/metabolismo , Linfócitos T CD4-Positivos/imunologia , Sinalização do Cálcio/imunologia , Ativação Linfocitária , Receptores de Antígenos de Linfócitos T/metabolismo , Animais , Células Apresentadoras de Antígenos , Antígenos CD28/imunologia , Linfócitos T CD4-Positivos/metabolismo , Células COS , Células Cultivadas , Chlorocebus aethiops , Técnicas de Cocultura , Antígeno-1 Associado à Função Linfocitária/imunologia , Antígeno-1 Associado à Função Linfocitária/metabolismo , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Cultura Primária de Células , Receptores de Antígenos de Linfócitos T/imunologia
15.
Sci Rep ; 8(1): 4966, 2018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29563576

RESUMO

Phosphoinositides (PIs) play important roles in numerous membrane-based cellular activities. However, their involvement in the mechanism of T cell receptor (TCR) signal transduction across the plasma membrane (PM) is poorly defined. Here, we investigate their role, and in particular that of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] in TCR PM dynamics and activity in a mouse T-cell hybridoma upon ectopic expression of a PM-localized inositol polyphosphate-5-phosphatase (Inp54p). We observed that dephosphorylation of PI(4,5)P2 by the phosphatase increased the TCR/CD3 complex PM lateral mobility prior stimulation. The constitutive and antigen-elicited CD3 phosphorylation as well as the antigen-stimulated early signaling pathways were all found to be significantly augmented in cells expressing the phosphatase. Using state-of-the-art biophotonic approaches, we further showed that PI(4,5)P2 dephosphorylation strongly promoted the CD3ε cytoplasmic domain unbinding from the PM inner leaflet in living cells, thus resulting in an increased CD3 availability for interactions with Lck kinase. This could significantly account for the observed effects of PI(4,5)P2 dephosphorylation on the CD3 phosphorylation. Our data thus suggest that PIs play a key role in the regulation of the TCR/CD3 complex dynamics and activation at the PM.


Assuntos
Complexo CD3/metabolismo , Membrana Celular/metabolismo , Fosfatidilinositóis/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/metabolismo , Animais , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Hibridomas , Células Jurkat , Camundongos , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação , Linfócitos T/citologia
16.
Nat Commun ; 8: 15370, 2017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28589952

RESUMO

How cells control their shape and size is a long-standing question in cell biology. Many rod-shaped bacteria elongate their sidewalls by the action of cell wall synthesizing machineries that are associated to actin-like MreB cortical patches. However, little is known about how elongation is regulated to enable varied growth rates and sizes. Here we use total internal reflection fluorescence microscopy and single-particle tracking to visualize MreB isoforms, as a proxy for cell wall synthesis, in Bacillus subtilis and Escherichia coli cells growing in different media and during nutrient upshift. We find that these two model organisms appear to use orthogonal strategies to adapt to growth regime variations: B. subtilis regulates MreB patch speed, while E. coli may mainly regulate the production capacity of MreB-associated cell wall machineries. We present numerical models that link MreB-mediated sidewall synthesis and cell elongation, and argue that the distinct regulatory mechanism employed might reflect the different cell wall integrity constraints in Gram-positive and Gram-negative bacteria.


Assuntos
Bacillus subtilis/crescimento & desenvolvimento , Escherichia coli/crescimento & desenvolvimento , Modelos Biológicos , Bacillus subtilis/citologia , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Escherichia coli/citologia , Escherichia coli/metabolismo , Microscopia de Fluorescência , Movimento , Peptidoglicano/metabolismo
17.
Genome Biol ; 16: 206, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-26399229

RESUMO

BACKGROUND: The spatiotemporal behavior of chromatin is an important control mechanism of genomic function. Studies in Saccharomyces cerevisiae have broadly contributed to demonstrate the functional importance of nuclear organization. Although in the wild yeast survival depends on their ability to withstand adverse conditions, most of these studies were conducted on cells undergoing exponential growth. In these conditions, as in most eukaryotic cells, silent chromatin that is mainly found at the 32 telomeres accumulates at the nuclear envelope, forming three to five foci. RESULTS: Here, combining live microscopy, DNA FISH and chromosome conformation capture (HiC) techniques, we report that chromosomes adopt distinct organizations according to the metabolic status of the cell. In particular, following carbon source exhaustion the genome of long-lived quiescent cells undergoes a major spatial re-organization driven by the grouping of telomeres into a unique focus or hypercluster localized in the center of the nucleus. This change in genome conformation is specific to quiescent cells able to sustain long-term viability. We further show that reactive oxygen species produced by mitochondrial activity during respiration commit the cell to form a hypercluster upon starvation. Importantly, deleting the gene encoding telomere associated silencing factor SIR3 abolishes telomere grouping and decreases longevity, a defect that is rescued by expressing a silencing defective SIR3 allele competent for hypercluster formation. CONCLUSIONS: Our data show that mitochondrial activity primes cells to group their telomeres into a hypercluster upon starvation, reshaping the genome architecture into a conformation that may contribute to maintain longevity of quiescent cells.


Assuntos
Fase de Repouso do Ciclo Celular/genética , Telômero/ultraestrutura , Carbono/metabolismo , Centrômero , Cromossomos Fúngicos , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética
18.
Methods Enzymol ; 519: 277-302, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23280115

RESUMO

While intrinsic Brownian agitation within a lipid bilayer does homogenize the molecular distribution, the extremely diverse composition of the plasma membrane, in contrast, favors the development of inhomogeneity due to the propensity of such a system to minimize its total free energy. Precisely, deciphering such inhomogeneous organization with appropriate spatiotemporal resolution remains, however, a challenge. In accordance with its ability to accurately measure diffusion parameters, fluorescence correlation spectroscopy (FCS) has been developed in association with innovative experimental strategies to monitor modes of molecular lateral confinement within the plasma membrane of living cells. Here, we describe a method, namely spot variation FCS (svFCS), to decipher the dynamics of the plasma membrane organization. The method is based on questioning the relationship between the diffusion time τ(d) and the squared waist of observation w(2). Theoretical models have been developed to predict how geometrical constraints such as the presence of adjacent or isolated domains affect the svFCS observations. These investigations have allowed significant progress in the characterization of cell membrane lateral organization at the suboptical level, and have provided, for instance, compelling evidence for the in vivo existence of raft nanodomains.


Assuntos
Espectrometria de Fluorescência/métodos , Calibragem , Adesão Celular , Linhagem Celular , Humanos , Microscopia/métodos
19.
J Vis Exp ; (63): e3599, 2012 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-22664619

RESUMO

Our goal is to obtain a comprehensive description of molecular processes occurring at cellular membranes in different biological functions. We aim at characterizing the complex organization and dynamics of the plasma membrane at single-molecule level, by developing analytic tools dedicated to Single-Particle Tracking (SPT) at high density: Multiple-Target Tracing (MTT). Single-molecule videomicroscopy, offering millisecond and nanometric resolution, allows a detailed representation of membrane organization by accurately mapping descriptors such as cell receptors localization, mobility, confinement or interactions. We revisited SPT, both experimentally and algorithmically. Experimental aspects included optimizing setup and cell labeling, with a particular emphasis on reaching the highest possible labeling density, in order to provide a dynamic snapshot of molecular dynamics as it occurs within the membrane. Algorithmic issues concerned each step used for rebuilding trajectories: peaks detection, estimation and reconnection, addressed by specific tools from image analysis. Implementing deflation after detection allows rescuing peaks initially hidden by neighboring, stronger peaks. Of note, improving detection directly impacts reconnection, by reducing gaps within trajectories. Performances have been evaluated using Monte-Carlo simulations for various labeling density and noise values, which typically represent the two major limitations for parallel measurements at high spatiotemporal resolution. The nanometric accuracy obtained for single molecules, using either successive on/off photoswitching or non-linear optics, can deliver exhaustive observations. This is the basis of nanoscopy methods such as STORM, PALM, RESOLFT or STED, which may often require imaging fixed samples. The central task is the detection and estimation of diffraction-limited peaks emanating from single-molecules. Hence, providing adequate assumptions such as handling a constant positional accuracy instead of Brownian motion, MTT is straightforwardly suited for nanoscopic analyses. Furthermore, MTT can fundamentally be used at any scale: not only for molecules, but also for cells or animals, for instance. Hence, MTT is a powerful tracking algorithm that finds applications at molecular and cellular scales.


Assuntos
Membrana Celular/química , Pontos Quânticos , Algoritmos , Animais , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Difusão , Microscopia de Vídeo/métodos , Método de Monte Carlo , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo
20.
J Biomed Opt ; 16(2): 021106, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21361669

RESUMO

We present the assets and constraints of using optical parametric oscillators (OPOs) to perform point scanning nonlinear microscopy and spectroscopy with special emphasis on coherent Raman spectroscopy. The different possible configurations starting with one OPO and two OPOs are described in detail and with comments that are intended to be practically useful for the user. Explicit examples on test samples such as nonlinear organic crystal, polystyrene beads, and fresh mouse tissues are given. Special emphasis is given to background-free coherent Raman anti-Stokes scattering (CARS) imaging, including CARS hyperspectral imaging in a fully automated mode with commercial OPOs.


Assuntos
Iluminação/instrumentação , Microscopia/instrumentação , Oscilometria/instrumentação , Reconhecimento Automatizado de Padrão/métodos , Pele/química , Pele/citologia , Análise Espectral Raman/instrumentação , Animais , Desenho de Equipamento , Análise de Falha de Equipamento , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA