Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Conserv Biol ; 37(5): e14112, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37204008

RESUMO

Peri-urban forest monitoring requires indicators of vegetation damage. An example is the sacred fir (Abies religiosa) forests surrounding Mexico City, which have been heavily exposed to tropospheric ozone, a harmful pollutant, for over 4 decades. We developed a participatory monitoring system with which local community members and scientists generated data on ozone tree damage. Santa Rosa Xochiac rangers (13) used the digital tool KoboToolBox to record ozone damage to trees, tree height, tree ages, tree condition, tree position, and whether the tree had been planted. Thirty-five percent of the trees (n = 1765) had ozone damage. Younger trees had a lower percentage of foliage damaged by ozone than older trees (p < 0.0001), and asymptomatic trees tended to be younger (p < 0.0001). Symptomatic trees were taller than asymptomatic trees of the same age (R2 c  = 0.43, R2 m  = 0.27). Involving local communities facilitated forest monitoring and using digital technology improved data quality. This participatory system can be used to monitor forest condition change over time and thus aids restoration efforts driven by government or local communities' interests, facilitating local decision-making.


Evaluación del daño relacionado a la contaminación y del éxito de la restauración de los bosques urbanos con un monitoreo participativo y herramientas digitales Resumen El monitoreo de los bosques periurbanos requiere indicadores de daños en la vegetación. Un ejemplo son los bosques de abeto (Abies religiosa) que rodean la Ciudad de México, pues desde hace más de 4 décadas han estado expuestos al ozono troposférico, un contaminante nocivo. Desarrollamos un sistema de monitoreo participativo con el que miembros de la comunidad local y científicos generaron datos sobre los daños causados por el ozono en los árboles. Los guardabosques de Santa Rosa Xochiac (133) utilizaron la herramienta digital KoboToolBox para registrar los daños causados por el ozono en los árboles, su altura, edad, estado, posición y si eran árboles plantados. El 35% de los árboles (n = 1,765) presentó daños por ozono. Los árboles más jóvenes tenían un menor porcentaje de follaje dañado por el ozono que los árboles más viejos (p<0.0001), y los árboles asintomáticos tendían a ser más jóvenes (p<0.0001). Los árboles sintomáticos eran más altos que los asintomáticos de la misma edad (R2 c = 0.43, R2 m = 0.27). La participación de las comunidades locales facilitó el monitoreo forestal y el uso de tecnología digital mejoró la calidad de los datos. Este sistema participativo puede utilizarse para monitorear los cambios en el estado de los bosques a lo largo del tiempo y contribuir a los esfuerzos de restauración impulsados por el gobierno o las comunidades locales, facilitando la toma de decisiones a nivel local.


Assuntos
Conservação dos Recursos Naturais , Ozônio , Florestas , Árvores , Poluição Ambiental
2.
Int J Mol Sci ; 21(18)2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32942636

RESUMO

The intratumor heterogeneity represents one of the most difficult challenges for the development of effective therapies to treat pediatric glioblastoma (pGBM) and diffuse intrinsic pontine glioma (DIPG). These brain tumors are composed of heterogeneous cell subpopulations that coexist and cooperate to build a functional network responsible for their aggressive phenotype. Understanding the cellular and molecular mechanisms sustaining such network will be crucial for the identification of new therapeutic strategies. To study more in-depth these mechanisms, we sought to apply the Multifluorescent Marking Technology. We generated multifluorescent pGBM and DIPG bulk cell lines randomly expressing six different fluorescent proteins and from which we derived stable optical barcoded single cell-derived clones. In this study, we focused on the application of the Multifluorescent Marking Technology in 2D and 3D in vitro/ex vivo culture systems. We discuss how we integrated different multimodal fluorescence analysis platforms, identifying their strengths and limitations, to establish the tools that will enable further studies on the intratumor heterogeneity and interclonal interactions in pGBM and DIPG.


Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Glioma/patologia , Neoplasias Encefálicas/metabolismo , Linhagem Celular , Glioblastoma/metabolismo , Glioma/metabolismo , Células HEK293 , Humanos , Proteínas Luminescentes/metabolismo , Pediatria , Tecnologia/métodos
3.
Am J Med Genet A ; 179(1): 113-117, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30569626

RESUMO

Kabuki syndrome (KS) is an extremely rare genetic disorder, mainly caused by germline mutations at specific epigenetic modifier genes, including KMT2D. Because the tumor suppressor gene KMT2D is also frequently altered in many cancer types, it has been suggested that KS may predispose to the development of cancer. However, KS being a rare disorder, few data are available on the incidence of cancer in KS patients. Here, we report the case of a 5-year-old boy affected by KS who developed Burkitt lymphoma (BL). Genetic analysis revealed the presence of a novel heterozygous mutation in the splice site of the intron 4 of KMT2D gene in both peripheral blood-extracted DNA and tumour cells. In addition, the tumour sample of the patient was positive for the classical somatic chromosomal translocation t(8;14) involving the c-MYC gene frequently identified in BL. We propose that the mutated KMT2D gene contributes to the development of both KS and BL observed in our patient and we suggest that strict surveillance must be performed in KS patients.


Assuntos
Anormalidades Múltiplas/genética , Linfoma de Burkitt/genética , Proteínas de Ligação a DNA/genética , Face/anormalidades , Doenças Hematológicas/genética , Proteínas de Neoplasias/genética , Isoformas de Proteínas/genética , Doenças Vestibulares/genética , Anormalidades Múltiplas/fisiopatologia , Linfoma de Burkitt/complicações , Linfoma de Burkitt/fisiopatologia , Pré-Escolar , Face/fisiopatologia , Doenças Hematológicas/complicações , Doenças Hematológicas/fisiopatologia , Humanos , Masculino , Mutação , Proteínas Proto-Oncogênicas c-myc/genética , Translocação Genética/genética , Doenças Vestibulares/complicações , Doenças Vestibulares/fisiopatologia
4.
Front Immunol ; 15: 1356321, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38420122

RESUMO

Cancer immunotherapy has made impressive advances in improving the outcome of patients affected by malignant diseases. Nonetheless, some limitations still need to be tackled to more efficiently and safely treat patients, in particular for those affected by solid tumors. One of the limitations is related to the immunosuppressive tumor microenvironment (TME), which impairs anti-tumor immunity. Efforts to identify targets able to turn the TME into a milieu more auspicious to current immuno-oncotherapy is a real challenge due to the high redundancy of the mechanisms involved. However, the insulin-like growth factor 1 receptor (IGF1R), an attractive drug target for cancer therapy, is emerging as an important immunomodulator and regulator of key immune cell functions. Here, after briefly summarizing the IGF1R signaling pathway in cancer, we review its role in regulating immune cells function and activity, and discuss IGF1R as a promising target to improve anti-cancer immunotherapy.


Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Imunoterapia , Neoplasias/terapia , Sistemas de Liberação de Medicamentos , Terapia de Alvo Molecular , Receptor IGF Tipo 1
5.
J Med Chem ; 66(8): 5907-5936, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37017629

RESUMO

CCT251236 1, a potent chemical probe, was previously developed from a cell-based phenotypic high-throughput screen (HTS) to discover inhibitors of transcription mediated by HSF1, a transcription factor that supports malignancy. Owing to its activity against models of refractory human ovarian cancer, 1 was progressed into lead optimization. The reduction of P-glycoprotein efflux became a focus of early compound optimization; central ring halogen substitution was demonstrated by matched molecular pair analysis to be an effective strategy to mitigate this liability. Further multiparameter optimization led to the design of the clinical candidate, CCT361814/NXP800 22, a potent and orally bioavailable fluorobisamide, which caused tumor regression in a human ovarian adenocarcinoma xenograft model with on-pathway biomarker modulation and a clean in vitro safety profile. Following its favorable dose prediction to human, 22 has now progressed to phase 1 clinical trial as a potential future treatment for refractory ovarian cancer and other malignancies.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Humanos , Feminino , Fatores de Transcrição/metabolismo , Neoplasias Ovarianas/patologia , Linhagem Celular Tumoral , Antineoplásicos/farmacologia
6.
Cell Biosci ; 13(1): 207, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957701

RESUMO

BACKGROUND: Paediatric-type diffuse High-Grade Gliomas (PDHGG) are highly heterogeneous tumours which include distinct cell sub-populations co-existing within the same tumour mass. We have previously shown that primary patient-derived and optical barcoded single-cell-derived clones function as interconnected networks. Here, we investigated the role of exosomes as a route for inter-clonal communication mediating PDHGG migration and invasion. RESULTS: A comprehensive characterisation of seven optical barcoded single-cell-derived clones obtained from two patient-derived cell lines was performed. These analyses highlighted extensive intra-tumour heterogeneity in terms of genetic and transcriptional profiles between clones as well as marked phenotypic differences including distinctive motility patterns. Live single-cell tracking analysis of 3D migration and invasion assays showed that the single-cell-derived clones display a higher speed and longer travelled distance when in co-culture compared to mono-culture conditions. To determine the role of exosomes in PDHGG inter-clonal cross-talks, we isolated exosomes released by different clones and characterised them in terms of marker expression, size and concentration. We demonstrated that exosomes are actively internalized by the cells and that the inhibition of their biogenesis, using the phospholipase inhibitor GW4689, significantly reduced the cell motility in mono-culture and more prominently when the cells from the clones were in co-culture. Analysis of the exosomal miRNAs, performed with a miRNome PCR panel, identified clone-specific miRNAs and a set of miRNA target genes involved in the regulation of cell motility/invasion/migration. These genes were found differentially expressed in co-culture versus mono-culture conditions and their expression levels were significantly modulated upon inhibition of exosome biogenesis. CONCLUSIONS: In conclusion, our study highlights for the first time a key role for exosomes in the inter-clonal communication in PDHGG and suggests that interfering with the exosome biogenesis pathway may be a valuable strategy to inhibit cell motility and dissemination for these specific diseases.

7.
Nanomaterials (Basel) ; 12(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35957128

RESUMO

To move away from fossil fuels, the electrochemical reaction plays a critical role in renewable energy sources and devices. The anodic oxygen evolution reaction (OER) is always coupled with these reactions in devices but suffers from large energy barriers. Thus, it is important for developing efficient OER catalysts with low overpotential. On the other hand, there are large amounts of metals in electronic waste (E-waste), especially various transition metals that are promising alternatives for catalyzing OER. Hence, this work, which focuses on upcycling Class II BaTiO3 Multilayer Ceramic Capacitors, of which two trillion were produced in 2011 alone. We achieved this by first using a green solvent extraction method that combined the ionic liquid Aliquat® 336 and hydrochloride acid to recover a mixed solution of Ni, Fe and Cu cations, and then using such a solution to synthesize high potential catalysts NiFe hydroxide and NiCu hydroxide for OER. NiFe-hydroxide has been demonstrated to have faster OER kinetics than the NiCu-hydroxide and commercial c-RuO2. In addition, it showed promising results after the chronopotentiometry tests that outperform c-RuO2.

8.
Diagnostics (Basel) ; 12(9)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36140466

RESUMO

Diffuse midline glioma (DMG) is a heterogeneous group of aggressive pediatric brain tumors with a fatal prognosis. The biological hallmark in the major part of the cases is H3K27 alteration. Prognosis remains poor, with median survival ranging from 9 to 12 months from diagnosis. Clinical and radiological prognostic factors only partially change the progression-free survival but they do not improve the overall survival. Despite efforts, there is currently no curative therapy for DMG. Radiotherapy remains the standard treatment with only transitory benefits. No chemotherapeutic regimens were found to significantly improve the prognosis. In the new era of a deeper integration between histological and molecular findings, potential new approaches are currently under investigation. The entire international scientific community is trying to target DMG on different aspects. The therapeutic strategies involve targeting epigenetic alterations, such as methylation and acetylation status, as well as identifying new molecular pathways that regulate oncogenic proliferation; immunotherapy approaches too are an interesting point of research in the oncology field, and the possibility of driving the immune system against tumor cells has currently been evaluated in several clinical trials, with promising preliminary results. Moreover, thanks to nanotechnology amelioration, the development of innovative delivery approaches to overcross a hostile tumor microenvironment and an almost intact blood-brain barrier could potentially change tumor responses to different treatments. In this review, we provide a comprehensive overview of available and potential new treatments that are worldwide under investigation, with the intent that patient- and tumor-specific treatment could change the biological inauspicious history of this disease.

9.
Front Oncol ; 12: 835642, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574376

RESUMO

Rhabdomyosarcoma (RMS) is a pediatric myogenic soft tissue sarcoma. The Fusion-Positive (FP) subtype expresses the chimeric protein PAX3-FOXO1 (P3F) while the Fusion-Negative (FN) is devoid of any gene translocation. FP-RMS and metastatic FN-RMS are often unresponsive to conventional therapy. Therefore, novel therapeutic approaches are needed to halt tumor progression. NOTCH signaling has oncogenic functions in RMS and its pharmacologic inhibition through γ-secretase inhibitors blocks tumor growth in vitro and in vivo. Here, we show that NOTCH signaling blockade resulted in the up-regulation and phosphorylation of the MET oncogene in both RH30 (FP-RMS) and RD (FN-RMS) cell lines. Pharmacologic inhibition of either NOTCH or MET signaling slowed proliferation and restrained cell survival compared to control cells partly by increasing Annexin V and CASP3/7 activation. Co-treatment with NOTCH and MET inhibitors significantly amplified these effects and enhanced PARP1 cleavage in both cell lines. Moreover, it severely hampered cell migration, colony formation, and anchorage-independent growth compared to single-agent treatments in both cell lines and significantly prevented the growth of FN-RMS cells grown as spheroids. Collectively, our results unveil the overexpression of the MET oncogene by NOTCH signaling targeting in RMS cells and show that MET pathway blockade sensitizes them to NOTCH inhibition.

10.
Neuro Oncol ; 24(7): 1150-1163, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34964902

RESUMO

BACKGROUND: Diffuse midline gliomas (DMG) H3K27M-mutant, including diffuse intrinsic pontine glioma (DIPG), are pediatric brain tumors associated with grim prognosis. Although GD2-CAR T-cells demonstrated significant anti-tumor activity against DMG H3K27M-mutant in vivo, a multimodal approach may be needed to more effectively treat patients. We investigated GD2 expression in DMG/DIPG and other pediatric high-grade gliomas (pHGG) and sought to identify chemical compounds that would enhance GD2-CAR T-cell anti-tumor efficacy. METHODS: Immunohistochemistry in tumor tissue samples and immunofluorescence in primary patient-derived cell lines were performed to study GD2 expression. We developed a high-throughput cell-based assay to screen 42 kinase inhibitors in combination with GD2-CAR T-cells. Cell viability, western blots, flow-cytometry, real time PCR experiments, DIPG 3D culture models, and orthotopic xenograft model were applied to investigate the effect of selected compounds on DIPG cell death and CAR T-cell function. RESULTS: GD2 was heterogeneously, but widely, expressed in the tissue tested, while its expression was homogeneous and restricted to DMG/DIPG H3K27M-mutant cell lines. We identified dual IGF1R/IR antagonists, BMS-754807 and linsitinib, able to inhibit tumor cell viability at concentrations that do not affect CAR T-cells. Linsitinib, but not BMS-754807, decreases activation/exhaustion of GD2-CAR T-cells and increases their central memory profile. The enhanced anti-tumor activity of linsitinib/GD2-CAR T-cell combination was confirmed in DIPG models in vitro, ex vivo, and in vivo. CONCLUSION: Our study supports the development of IGF1R/IR inhibitors to be used in combination with GD2-CAR T-cells for treating patients affected by DMG/DIPG and, potentially, by pHGG.


Assuntos
Neoplasias do Tronco Encefálico , Glioma , Imunoterapia Adotiva , Receptor IGF Tipo 1 , Receptor de Insulina , Neoplasias do Tronco Encefálico/patologia , Criança , Glioma/tratamento farmacológico , Glioma/genética , Glioma/patologia , Humanos , Receptor IGF Tipo 1/antagonistas & inibidores , Receptor de Insulina/antagonistas & inibidores , Linfócitos T/metabolismo
11.
Ther Adv Med Oncol ; 14: 17588359221113693, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090803

RESUMO

Background: Diffuse intrinsic pontine glioma (DIPG) is a fatal disease with a median overall survival (OS) of less than 12 months after diagnosis. Radiotherapy (RT) still remains the mainstay treatment. Several other therapeutic strategies have been attempted in the last years without a significant effect on OS. Although radiological imaging is the gold standard for DIPG diagnosis, the urgent need to improve the survival has led to the reconsideration of biopsy with the aim to better understand the molecular profile of DIPG and support personalized treatment. Methods: In this study, we present a single-center experience in treating DIPG patients at disease progression combining targeted therapies with standard of care. Biopsy was proposed to all patients at diagnosis or disease progression. First-line treatment included RT and nimotuzumab/vinorelbine or temozolomide. Immunohistochemistry-targeted research included study of mTOR/p-mTOR pathway and BRAFv600E. Molecular analyses included polymerase chain reaction, followed by Sanger sequences and/or next-generation sequencing. Results: Based on the molecular profile, targeted therapy was administered in 9 out of 25 patients, while the remaining 16 patients were treated with standard of care. Personalized treatment included inhibition of the PI3K/AKT/mTOR pathway (5/9), PI3K/AKT/mTOR pathway and BRAFv600E (1/9), ACVR1 (2/9) and PDGFRA (1/9); no severe side effects were reported during treatment. Response to treatment was evaluated according to Response Assessment in Pediatric Neuro-Oncology criteria, and the overall response rate within the cohort was 66%. Patients treated with targeted therapies were compared with the control cohort of 16 patients. Clinical and pathological characteristics of the two cohorts were homogeneous. Median OS in the personalized treatment and control cohort was 20.26 and 14.18 months, respectively (p = 0.032). In our experience, the treatment associated with the best OS was everolimus. Conclusion: Despite the small simple size of our study, our data suggest a prognostic advantage and a safe profile of targeted therapies in DIPG patients, and we strongly advocate to reconsider the role of biopsy for these patients.

12.
Cancers (Basel) ; 13(16)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34439194

RESUMO

Pathologic activation of PI3Ks and the subsequent deregulation of its downstream signaling pathway is among the most frequent events associated with cellular transformation, cancer, and metastasis. PI3Ks are also emerging as critical factors in regulating anti-tumor immunity by either promoting an immunosuppressive tumor microenvironment or by controlling the activity and the tumor infiltration of cells involved in the immune response. For these reasons, significant pharmaceutical efforts are dedicated to inhibiting the PI3K pathway, with the main goal to target the tumor and, at the same time, to enhance the anti-tumor immunity. Recent immunotherapeutic approaches involving the use of adoptive cell transfer of autologous genetically modified T cells or immune check-point inhibitors showed high efficacy. However, mechanisms of resistance to these kinds of therapy are emerging, due in part to the inhibition of effector T cell functions exerted by the immunosuppressive tumor microenvironment. Here, we first describe how inhibition of PI3K/Akt pathway contribute to enhance anti-tumor immunity and further discuss how inhibitors of the pathway are used in combination with different immunomodulatory and immunotherapeutic agents to improve anti-tumor efficacy.

13.
Biotechniques ; 70(6): 327-335, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33969693

RESUMO

3D models are increasingly used to study mechanisms driving tumor progression and mimicking in vitro processes such as invasion and migration. However, there is a need to establish more protocols based on 3D culture systems that allow for downstream molecular biology investigations. Materials & methods: Here we present a method for optimal RNA extraction from highly aggressive primary glioma cells invading into Matrigel. The method has been established by comparing previously reported protocols, available commercial kits and optimizing specific steps for matrix dissociation, RNA separation and purification. Results and conclusion: The protocol allows RNA extraction from cells embedded into Matrigel, with optimal yield, purity and integrity suitable for subsequent sequencing analysis of both high and low molecular weight RNA.


Assuntos
Colágeno , Glioma/patologia , Laminina , Invasividade Neoplásica , Proteoglicanas , RNA , Linhagem Celular Tumoral , Movimento Celular , Combinação de Medicamentos , Humanos , RNA/isolamento & purificação
14.
J Exp Clin Cancer Res ; 40(1): 364, 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34784956

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common and lethal malignant tumours worldwide. Sorafenib (SOR) is one of the most effective single-drug systemic therapy against advanced HCC, but the identification of novel combination regimens for a continued improvement in overall survival is a big challenge. Recent studies highlighted the crucial role of focal adhesion kinase (FAK) in HCC growth. The aim of this study was to investigate the antitumor effects of three different FAK inhibitors (FAKi), alone or in combination with SOR, using in vitro and in vivo models of HCC. METHODS: The effect of PND1186, PF431396, TAE226 on cell viability was compared to SOR. Among them TAE226, emerging as the most effective FAKi, was tested alone or in combination with SOR using 2D/3D human HCC cell line cultures and HCC xenograft murine models. The mechanisms of action were assessed by gene/protein expression and imaging approaches, combined with high-throughput methods. RESULTS: TAE226 was the more effective FAKi to be combined with SOR against HCC. Combined TAE226 and SOR treatment reduced HCC growth both in vitro and in vivo by affecting tumour-promoting gene expression and inducing epigenetic changes via dysregulation of FAK nuclear interactome. We characterized a novel nuclear functional interaction between FAK and the NuRD complex. TAE226-mediated FAK depletion and SOR-promoted MAPK down-modulation caused a decrease in the nuclear amount of HDAC1/2 and a consequent increase of the histone H3 lysine 27 acetylation, thus counteracting histone H3 lysine 27 trimethylation. CONCLUSIONS: Altogether, our findings provide the first evidence that TAE226 combined with SOR efficiently reduces HCC growth in vitro and in vivo. Also, our data highlight that deep analysis of FAK nuclear interactome may lead to the identification of new promising targets for HCC therapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Epigênese Genética/genética , Neoplasias Hepáticas/tratamento farmacológico , Morfolinas/uso terapêutico , Sorafenibe/uso terapêutico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Morfolinas/farmacologia , Sorafenibe/farmacologia
15.
Cells ; 10(1)2020 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374128

RESUMO

The adoptive transfer of the chimeric antigen receptor (CAR) expressing T-cells has produced unprecedented successful results in the treatment of B-cell malignancies. However, the use of this technology in other malignancies remains less effective. In the setting of solid neoplasms, CAR T-cell metabolic fitness needs to be optimal to reach the tumor and execute their cytolytic function in an environment often hostile. It is now well established that both tumor and T cell metabolisms play critical roles in controlling the immune response by conditioning the tumor microenvironment and the fate and activity of the T cells. In this review, after a brief description of the tumoral and T cell metabolic reprogramming, we summarize the latest advances and new strategies that have been developed to improve the metabolic fitness and efficacy of CAR T-cell products.


Assuntos
Imunoterapia Adotiva , Neoplasias , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T , Microambiente Tumoral/imunologia , Antígenos de Neoplasias/imunologia , Humanos , Neoplasias/imunologia , Neoplasias/terapia , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo
16.
ACS Appl Mater Interfaces ; 10(19): 16424-16435, 2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29664284

RESUMO

The sustainability through the energy and environmental costs involve the development of new cathode materials, considering the material abundance, the toxicity, and the end of life. Currently, some synthesis methods of new cathode materials and a large majority of recycling processes are based on the use of acidic solutions. This study addresses the mechanistic and limiting aspects on the dissolution of the layered LiNi1/3Mn1/3Co1/3O2 oxide in acidic solution. The results show a dissolution of the active cathode material in two steps, which leads to the formation of a well-defined core-shell structure inducing an enrichment in manganese on the particle surface. The crucial role of lithium extraction is discussed and considered as the source of a "self-regulating" dissolution process. The delithiation involves a cumulative charge compensation by the cationic and anionic redox reactions. The electrons generated from the compensation of charge conduct to the dissolution by the protons. The delithiation and its implications on the side reactions, by the modification of the potential, explain the structural and compositional evolutions observed toward a composite material MnO2·Li xMO2 (M = Ni, Mn, and Co). The study shows a clear way to produce new cathode materials and recover transition metals from Li-ion batteries by hydrometallurgical processes.

17.
Front Oncol ; 8: 526, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30488019

RESUMO

Low-grade gliomas (LGG) are the most common central nervous system tumors in children. Prognosis depends on complete surgical resection. For patients not amenable of gross total resection (GTR) new approaches are needed. The BRAF mutation V600E is critical for the pathogenesis of pediatric gliomas and specific inhibitors of the mutated protein, such as Vemurafenib, are available. We investigated the safety and efficacy of Vemurafenib as single agent in pediatric patients with V600E+ LGG. From November 2013 to May 2018, 7 patients have been treated in our Institution; treatment was well-tolerated, the main concern being dermatological toxicity. The best responses to treatment were: 1 complete response, 3 partial responses, 1 stable disease, only one patient progressed; in one patient, the follow-up is too short to establish the clinical response. Two patients discontinued treatment, and, in both cases, immediate progression of the disease was observed. In one case the treatment was discontinued due to toxicity, in the other one the previously assessed BRAF V600E mutation was not confirmed by further investigation. Two patients, after obtaining a response, progressed during treatment, suggesting the occurrence of resistance mechanisms. Clinical response, with improvement of the neurologic function, was observed in all patients a few weeks after the therapy was started. Despite the limitations inherent to a small and heterogeneous cohort, this experience, suggests that Vemurafenib represents a treatment option in pediatric patients affected by LGG and carrying BRAF mutation V600E.

18.
Front Pediatr ; 6: 108, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29868519

RESUMO

Extraventricular neurocytoma (EVN) is an extremely rare tumor of neuroglial origin with a tendency toward ganglionic or glial differentiation. In the 2016 World Health Organization Classification, EVN was classified as a grade II tumor and described as a neoplasm with good outcome. However, the presence of cellular atypia is an important unfavorable prognostic factor. Here, we describe the first case of a patient with a congenital EVN localized in the brainstem. After a sub-total resection, his disease rapidly progressed despite several chemotherapies, including molecular targeting approaches. He died 13 months after diagnosis. In conclusion, we report an atypical case of EVN presenting an extremely aggressive behavior, despite the absence of cellular atypia. The brainstem origin and the age of the patient may have represented two important prognostic factors for our patient.

19.
Clin Cancer Res ; 24(10): 2395-2407, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29391353

RESUMO

Purpose: Myeloma is a plasma cell malignancy characterized by the overproduction of immunoglobulin, and is therefore susceptible to therapies targeting protein homeostasis. We hypothesized that heat shock factor 1 (HSF1) was an attractive therapeutic target for myeloma due to its direct regulation of transcriptional programs implicated in both protein homeostasis and the oncogenic phenotype. Here, we interrogate HSF1 as a therapeutic target in myeloma using bioinformatic, genetic, and pharmacologic means.Experimental Design: To assess the clinical relevance of HSF1, we analyzed publicly available patient myeloma gene expression datasets. Validation of this novel target was conducted in in vitro experiments using shRNA or inhibitors of the HSF1 pathway in human myeloma cell lines and primary cells as well as in in vivo human myeloma xenograft models.Results: Expression of HSF1 and its target genes were associated with poorer myeloma patient survival. ShRNA-mediated knockdown or pharmacologic inhibition of the HSF1 pathway with a novel chemical probe, CCT251236, or with KRIBB11, led to caspase-mediated cell death that was associated with an increase in EIF2α phosphorylation, CHOP expression and a decrease in overall protein synthesis. Importantly, both CCT251236 and KRIBB11 induced cytotoxicity in human myeloma cell lines and patient-derived primary myeloma cells with a therapeutic window over normal cells. Pharmacologic inhibition induced tumor growth inhibition and was well-tolerated in a human myeloma xenograft murine model with evidence of pharmacodynamic biomarker modulation.Conclusions: Taken together, our studies demonstrate the dependence of myeloma cells on HSF1 for survival and support the clinical evaluation of pharmacologic inhibitors of the HSF1 pathway in myeloma. Clin Cancer Res; 24(10); 2395-407. ©2018 AACRSee related commentary by Parekh, p. 2237.


Assuntos
Biomarcadores Tumorais , Sobrevivência Celular/genética , Fatores de Transcrição de Choque Térmico/genética , Mieloma Múltiplo/genética , Animais , Antineoplásicos/farmacologia , Apoptose/genética , Caspases/metabolismo , Linhagem Celular Tumoral , Biologia Computacional/métodos , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Fatores de Transcrição de Choque Térmico/antagonistas & inibidores , Fatores de Transcrição de Choque Térmico/metabolismo , Humanos , Estimativa de Kaplan-Meier , Camundongos , Terapia de Alvo Molecular , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/mortalidade , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
20.
ChemSusChem ; 10(14): 2922-2935, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28520196

RESUMO

The platinum nanoparticles used as the catalyst in proton exchange membrane fuel cells (PEMFCs) represent approximately 46 % of the total price of the cells for a large-scale production, and this is one of the barriers to their commercialization. Therefore, the recycling of the platinum catalyst could be the best alternative to limit the production costs of PEMFCs. The usual recovery routes for spent catalysts containing platinum are pyro-hydrometallurgical processes in which a calcination step is followed by aqua regia treatment, and these processes generate fumes and NOx emissions, respectively. The electrochemical recovery route proposed here is more environmentally friendly, performed under "soft" temperature conditions, and does not result in any gas emissions. It consists of the coupling of the electrochemical leaching of platinum in chloride-based ionic liquids (ILs), followed by its electrodeposition. The leaching of platinum was studied in pure ILs and in ionic-liquid melts at different temperatures and with different chloride contents. Through the modulation of the composition of the ionic-liquid melts, it is possible to leach and electrodeposit the platinum from fuel-cell electrodes in a single-cell process under an inert or ambient atmosphere.


Assuntos
Química Verde , Líquidos Iônicos/química , Membranas Artificiais , Platina/química , Reciclagem , Atmosfera , Carbono/química , Catálise , Eletrodos , Imidazóis/química , Nanopartículas Metálicas/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA