Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 25(4): 682-692, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38396288

RESUMO

Fibroblasts are important regulators of inflammation, but whether fibroblasts change phenotype during resolution of inflammation is not clear. Here we use positron emission tomography to detect fibroblast activation protein (FAP) as a means to visualize fibroblast activation in vivo during inflammation in humans. While tracer accumulation is high in active arthritis, it decreases after tumor necrosis factor and interleukin-17A inhibition. Biopsy-based single-cell RNA-sequencing analyses in experimental arthritis show that FAP signal reduction reflects a phenotypic switch from pro-inflammatory MMP3+/IL6+ fibroblasts (high FAP internalization) to pro-resolving CD200+DKK3+ fibroblasts (low FAP internalization). Spatial transcriptomics of human joints indicates that pro-resolving niches of CD200+DKK3+ fibroblasts cluster with type 2 innate lymphoid cells, whereas MMP3+/IL6+ fibroblasts colocalize with inflammatory immune cells. CD200+DKK3+ fibroblasts stabilized the type 2 innate lymphoid cell phenotype and induced resolution of arthritis via CD200-CD200R1 signaling. Taken together, these data suggest a dynamic molecular regulation of the mesenchymal compartment during resolution of inflammation.


Assuntos
Artrite , Imunidade Inata , Humanos , Metaloproteinase 3 da Matriz , Interleucina-6/metabolismo , Linfócitos/metabolismo , Inflamação/metabolismo , Fibroblastos/metabolismo
2.
Immunity ; 51(3): 443-450.e4, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31422870

RESUMO

The presence of gallstones (cholelithiasis) is a highly prevalent and severe disease and one of the leading causes of hospital admissions worldwide. Due to its substantial health impact, we investigated the biological mechanisms that lead to the formation and growth of gallstones. We show that gallstone assembly essentially requires neutrophil extracellular traps (NETs). We found consistent evidence for the presence of NETs in human and murine gallstones and describe an immune-mediated process requiring activation of the innate immune system for the formation and growth of gallstones. Targeting NET formation via inhibition of peptidyl arginine deiminase type 4 or abrogation of reactive oxygen species (ROS) production, as well as damping of neutrophils by metoprolol, effectively inhibit gallstone formation in vivo. Our results show that after the physicochemical process of crystal formation, NETs foster their assembly into larger aggregates and finally gallstones. These insights provide a feasible therapeutic concept to prevent cholelithiasis in patients at risk.


Assuntos
Armadilhas Extracelulares/imunologia , Cálculos Biliares/imunologia , Neutrófilos/imunologia , Animais , Feminino , Humanos , Imunidade Inata/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/imunologia
3.
Eur J Immunol ; 54(4): e2350582, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38279592

RESUMO

Neutrophil extracellular traps (NETs) have been identified as triggers for a self-limited inflammatory reaction upon contact with nanoparticles within our bodies. This typically results in entrapping potentially harmful nano- or micro-objects following an immune burst. The demand for potent adjuvants has led to research on particulate-based adjuvants, particularly those that act via NET formation. Various particles, including hydrophobic nanoparticles, needle-like microparticles, and other natural and artificial crystals, have been shown to induce NET formation, eliciting a robust humoral and cellular immune response toward co-injected antigens. The NET formation was found to be the basis of the efficient use of alum as a vaccine adjuvant. Thus, nanoparticles with specific surface properties serve as NET-stimulating adjuvants. In this mini-review, we aim to summarize the current knowledge about the surface properties of particulate objects and the molecular pathways involved in inducing NET formation by neutrophils. Additionally, we discuss the potential use of nanoparticles for activating neutrophils in the tissues and the exploitation of such activation for enhancing vaccine adjuvants.


Assuntos
Armadilhas Extracelulares , Nanopartículas , Neutrófilos , Antígenos , Adjuvantes Imunológicos
4.
Chemistry ; : e202401107, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38923064

RESUMO

Red fluorescent dyes are usually charged, lipophilic molecules with relatively high molecular weight, which tend to localize in specific intracellular locations, e. g., a cyanine dye Cy5 is biased towards mitochondria. They are often used as markers of biomolecules including nucleic acids and proteins. Since the molecular weight of the dyes is much smaller than that of the biomolecules, the labelling has a negligible effect on the properties of the biomolecules. In contrast, conjugation of the dyes to low molecular weight (pro)drugs can dramatically alter their properties. For example, conjugates of Cy5 with lysosome-targeting aminoferrocenes accumulate in mitochondria and exhibit no intracellular effects characteristic for the parent (pro)drugs. Herein we tested several neutral and negatively charged dyes for labelling lysosome-targeting aminoferrocenes 7 and 8 as well as a non-targeted control 3. We found that a BODIPY derivative BDP-TR exhibits the desired unbiased properties: the conjugation does not disturb the intracellular localization of the (pro)drugs, their mode of action, and cancer cell specificity. We used the conjugates to clarify the mechanism of action of the aminoferrocenes. In particular, we identified new intermediates, explained why lysosome-targeting aminoferrocenes are more potent than their non-targeted counterparts, and evaluated their distribution in vivo.

5.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38928183

RESUMO

Sepsis is a life-threatening condition with a rising disease burden worldwide. It is a multifactorial disease and is defined as a dysregulated host response to infection. Neutrophils have been shown to be involved in the pathogenesis of sepsis by exacerbating inflammation. However, the exact effector mechanism of action still remains a mystery. Changes in the glycosylation pattern of the immunoglobulin G (IgG) Fc region are described for several diseases including meningococcal sepsis. In this study, we investigated the possible contribution of neutrophils and neutrophil implication, potentially related to degranulation or neutrophil extracellular trap (NET) formation in changing the IgG Fc N-glycosylation pattern in a murine sepsis model. We have measured the serum level of cytokines/chemokines and immunoglobulins, the serum activity of neutrophil elastase (NE), and analyzed the IgG Fc glycosylation pattern by Liquid Chromatography-Electrospray Ionization-Mass Spectrometry (LC-ESI-MS) and Lectin enzyme-linked immunosorbent assay (ELISA). We observed an increased activity of NE- and neutrophil-associated cytokines such as keratinocyte chemoattractant (KC) with the development of sepsis. Regarding the IgG Fc N-glycosylation, we observed an increase in fucosylation and α1,3-galactosylation and a decrease for sialyation. Interestingly, these changes were not uniform for all IgG subclasses. After depletion of neutrophils, we saw a change in the exposure of fucose and α2,6-linked sialic acid during the time course of our experimental sepsis model. In conclusion, neutrophils can influence changes in the IgG glycosylation pattern in experimental sepsis.


Assuntos
Modelos Animais de Doenças , Imunoglobulina G , Neutrófilos , Sepse , Animais , Sepse/metabolismo , Sepse/imunologia , Neutrófilos/metabolismo , Neutrófilos/imunologia , Glicosilação , Imunoglobulina G/metabolismo , Imunoglobulina G/imunologia , Imunoglobulina G/sangue , Camundongos , Citocinas/metabolismo , Fragmentos Fc das Imunoglobulinas/metabolismo , Camundongos Endogâmicos C57BL , Elastase de Leucócito/metabolismo , Masculino , Armadilhas Extracelulares/metabolismo , Glicoproteínas
6.
J Am Chem Soc ; 145(40): 22252-22264, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37773090

RESUMO

The amount of unfolded proteins is increased in cancer cells, leading to endoplasmic reticulum (ER) stress. Therefore, cancer cells are sensitive to drugs capable of further enhancing ER stress. Examples of such drugs include the clinically approved proteosome inhibitors bortezomib and carfilzomib. Unfortunately, the known ER stress inducers exhibit dose-limiting side effects that justify the search for better, more cancer-specific drugs of this type. Herein, we report on FeC 2, which binds to unfolded proteins prevents their further processing, thereby leading to ER stress and ROS increase in cancer cells, but not in normal cells. FeC 2 exhibits low micromolar toxicity toward human acute promyelocytic leukemia HL-60, Burkitt's lymphoma BL-2, T-cell leukemia Jurkat, ovarian carcinoma A2780, lung cancer SK-MES-1, and murine lung cancer LLC1 cells. Due to the cancer-specific mode of action, 2 is not toxic in vivo up to the dose of 147 mg/kg, does not affect normal blood and bone marrow cells at the therapeutically active dose, but strongly suppresses both primary tumor growth (confirmed in Nemeth-Kellner lymphoma and LLC1 lung cancer models of murine tumor) and spreading of metastases (LLC1).

7.
Int J Mol Sci ; 24(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36768969

RESUMO

Neutrophil extracellular traps (NETs) and oxidative stress are considered to be beneficial in the innate immune defense against pathogens. However, defective clearance of NETs in the lung of acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected patients could lead to severe respiratory syndrome infection, the so-called coronavirus disease 2019 (COVID-19). To elucidate the pathways that are related to NETs within the pathophysiology of COVID-19, we utilized RNA sequencing (RNA-seq) as well as immunofluorescence and immunohistochemistry methods. RNA-seq analysis provided evidence for increased oxidative stress and the activation of viral-related signaling pathways in post-mortem lungs of COVID-19 patients compared to control donors. Moreover, an excess of neutrophil infiltration and NET formation were detected in the patients' lungs, where the extracellular DNA was oxidized and co-localized with neutrophil granule protein myeloperoxidase (MPO). Interestingly, staining of the lipid peroxidation marker 4-hydroxynonenal (4-HNE) depicted high colocalization with NETs and was correlated with the neutrophil infiltration of the lung tissues, suggesting that it could serve as a suitable marker for the identification of NETs and the severity of the disease. Moreover, local inhalation therapy to reduce the excess lipid oxidation and NETs in the lungs of severely infected patients might be useful to ameliorate their clinical conditions.


Assuntos
COVID-19 , Armadilhas Extracelulares , Humanos , COVID-19/metabolismo , Armadilhas Extracelulares/metabolismo , SARS-CoV-2 , Pulmão , Estresse Oxidativo , Neutrófilos/metabolismo
8.
Chemistry ; 28(30): e202104420, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35419888

RESUMO

Elevated levels of reactive oxygen species (ROS) and deficient mitochondria are two weak points of cancer cells. Their simultaneous targeting is a valid therapeutic strategy to design highly potent anticancer drugs. The remaining challenge is to limit the drug effects to cancer cells without affecting normal ones. We have previously developed three aminoferrocene (AF)-based derivatives, which are activated in the presence of elevated levels of ROS present in cancer cells with formation of electron-rich compounds able to generate ROS and reduce mitochondrial membrane potential (MMP). All of them exhibit important drawbacks including either low efficacy or high unspecific toxicity that prevents their application in vivo up to date. Herein we describe unusual AF-derivatives lacking these drawbacks. These compounds act via an alternative mechanism: they are chemically stable in the presence of ROS, generate mitochondrial ROS in cancer cells, but not normal cells and exhibit anticancer effect in vivo.


Assuntos
Antineoplásicos , Mitocôndrias , Antineoplásicos/química , Apoptose , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
9.
Angew Chem Int Ed Engl ; 60(20): 11158-11162, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33656236

RESUMO

The folding and export of proteins and hydrolysis of unfolded proteins are disbalanced in the endoplasmic reticulum (ER) of cancer cells, leading to so-called ER stress. Agents further augmenting this effect are used as anticancer drugs including clinically approved proteasome inhibitors bortezomib and carfilzomib. However, these drugs can affect normal cells, which also rely strongly on ER functions, leading, for example, to accumulation of reactive oxygen species (ROS). To address this problem, we have developed ER-targeted prodrugs activated only in cancer cells in the presence of elevated ROS amounts. These compounds are conjugates of cholic acid with N-alkylaminoferrocene-based prodrugs. We confirmed their accumulation in the ER of cancer cells, their anticancer efficacy, and cancer cell specificity. These prodrugs induce ER stress, attenuate mitochondrial membrane potential, and generate mitochondrial ROS leading to cell death via necrosis. We also demonstrated that the new prodrugs are activated in vivo in Nemeth-Kellner lymphoma (NK/Ly) murine model.


Assuntos
Antineoplásicos/farmacologia , Retículo Endoplasmático/efeitos dos fármacos , Linfoma/tratamento farmacológico , Pró-Fármacos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Antineoplásicos/química , Retículo Endoplasmático/metabolismo , Humanos , Linfoma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Pró-Fármacos/química
10.
J Am Soc Nephrol ; 30(10): 1857-1869, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31296606

RESUMO

BACKGROUND: Serum oxalate levels suddenly increase with certain dietary exposures or ethylene glycol poisoning and are a well known cause of AKI. Established contributors to oxalate crystal-induced renal necroinflammation include the NACHT, LRR and PYD domains-containing protein-3 (NLRP3) inflammasome and mixed lineage kinase domain-like (MLKL) protein-dependent tubule necroptosis. These studies examined the role of a novel form of necrosis triggered by altered mitochondrial function. METHODS: To better understand the molecular pathophysiology of oxalate-induced AIK, we conducted in vitro studies in mouse and human kidney cells and in vivo studies in mice, including wild-type mice and knockout mice deficient in peptidylprolyl isomerase F (Ppif) or deficient in both Ppif and Mlkl. RESULTS: Crystals of calcium oxalate, monosodium urate, or calcium pyrophosphate dihydrate, as well as silica microparticles, triggered cell necrosis involving PPIF-dependent mitochondrial permeability transition. This process involves crystal phagocytosis, lysosomal cathepsin leakage, and increased release of reactive oxygen species. Mice with acute oxalosis displayed calcium oxalate crystals inside distal tubular epithelial cells associated with mitochondrial changes characteristic of mitochondrial permeability transition. Mice lacking Ppif or Mlkl or given an inhibitor of mitochondrial permeability transition displayed attenuated oxalate-induced AKI. Dual genetic deletion of Ppif and Mlkl or pharmaceutical inhibition of necroptosis was partially redundant, implying interlinked roles of these two pathways of regulated necrosis in acute oxalosis. Similarly, inhibition of mitochondrial permeability transition suppressed crystal-induced cell death in primary human tubular epithelial cells. PPIF and phosphorylated MLKL localized to injured tubules in diagnostic human kidney biopsies of oxalosis-related AKI. CONCLUSIONS: Mitochondrial permeability transition-related regulated necrosis and necroptosis both contribute to oxalate-induced AKI, identifying PPIF as a potential molecular target for renoprotective intervention.


Assuntos
Injúria Renal Aguda/patologia , Necrose Dirigida por Permeabilidade Transmembrânica da Mitocôndria , Necroptose , Injúria Renal Aguda/induzido quimicamente , Animais , Células Cultivadas , Humanos , Masculino , Camundongos , Oxalatos/administração & dosagem
11.
Biomacromolecules ; 20(10): 3915-3923, 2019 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-31479237

RESUMO

We report here on a one-pot construction of oil-filled hierarchical capsular assemblies using the nanoprecipitation technique. Relying on multicomponent phase diagrams, we show that simultaneous and/or sequential nanoprecipitations involving polymer combinations can be precisely programmed to design a new class of mixed/multilayered multicomponent nanocapsules, with a precise control of the dimensions, shell thickness/composition, and spatial distribution of the building blocks. The simplicity and tunability of this approach are exemplified here with a library of neutral and ionic polysaccharides giving access to a range of functional multilayered nanocarriers of interest for biomedical applications.


Assuntos
Nanocápsulas/química , Polissacarídeos/química , Tecnologia Farmacêutica/métodos , Óleos/química , Polímeros/química , Dióxido de Silício/química
12.
Proc Natl Acad Sci U S A ; 113(40): E5856-E5865, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27647892

RESUMO

The critical size for strong interaction of hydrophobic particles with phospholipid bilayers has been predicted to be 10 nm. Because of the wide spreading of nonpolar nanoparticles (NPs) in the environment, we aimed to reveal the ability of living organisms to entrap NPs via formation of neutrophil extracellular traps (NETs). Upon interaction with various cell types and tissues, 10- to 40-nm-sized NPs induce fast (<20 min) damage of plasma membranes and instability of the lysosomal compartment, leading to the immediate formation of NETs. In contrast, particles sized 100-1,000 nm behaved rather inertly. Resulting NET formation (NETosis) was accompanied by an inflammatory reaction intrinsically endowed with its own resolution, demonstrated in lungs and air pouches of mice. Persistence of small NPs in joints caused unremitting arthritis and bone remodeling. Small NPs coinjected with antigen exerted adjuvant-like activity. This report demonstrates a cellular mechanism that explains how small NPs activate the NETosis pathway and drive their entrapping and resolution of the initial inflammatory response.


Assuntos
Armadilhas Extracelulares/metabolismo , Inflamação/patologia , Nanopartículas/química , Tamanho da Partícula , Animais , Membrana Celular/metabolismo , Eritrócitos/metabolismo , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Imunidade , Pulmão/metabolismo , Camundongos Endogâmicos BALB C , Nanodiamantes/química , Nanodiamantes/ultraestrutura , Nanopartículas/ultraestrutura , Neutrófilos/metabolismo , Neutrófilos/ultraestrutura , Espécies Reativas de Oxigênio/metabolismo
13.
Molecules ; 23(11)2018 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-30373288

RESUMO

The fimbrial lectin FimH from uro- and enteropathogenic Escherichia coli binds with nanomolar affinity to oligomannose glycans exposing Manα1,3Man dimannosides at their non-reducing end, but only with micromolar affinities to Manα1,2Man dimannosides. These two dimannoses play a significantly distinct role in infection by E. coli. Manα1,2Man has been described early on as shielding the (Manα1,3Man) glycan that is more relevant to strong bacterial adhesion and invasion. We quantified the binding of the two dimannoses (Manα1,2Man and Manα1,3Man to FimH using ELLSA and isothermal microcalorimetry and calculated probabilities of binding modes using molecular dynamics simulations. Our experimentally and computationally determined binding energies confirm a higher affinity of FimH towards the dimannose Manα1,3Man. Manα1,2Man displays a much lower binding enthalpy combined with a high entropic gain. Most remarkably, our molecular dynamics simulations indicate that Manα1,2Man cannot easily take its major conformer from water into the FimH binding site and that FimH is interacting with two very different conformers of Manα1,2Man that occupy 42% and 28% respectively of conformational space. The finding that Manα1,2Man binding to FimH is unstable agrees with the earlier suggestion that E. coli may use the Manα1,2Man epitope for transient tethering along cell surfaces in order to enhance dispersion of the infection.


Assuntos
Adesinas de Escherichia coli/química , Proteínas de Fímbrias/química , Lectinas/química , Polissacarídeos/química , Aderência Bacteriana , Calorimetria , Escherichia coli/fisiologia , Lectinas/metabolismo , Manose/química , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Termodinâmica
14.
Angew Chem Int Ed Engl ; 57(37): 11943-11946, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30035345

RESUMO

Mitochondrial membrane potential is more negative in cancer cells than in normal cells, allowing cancer targeting by delocalized lipophilic cations (DLCs). However, as the difference is rather small, these drugs affect also normal cells. Now a concept of pro-DLCs is proposed based on an N-alkylaminoferrocene structure. These prodrugs are activated by the reaction with reactive oxygen species (ROS) forming ferrocenium-based DLCs. Since ROS are overproduced in cancer, the high-efficiency cancer-cell-specific targeting of mitochondria could be achieved as demonstrated by fluorescence microscopy in combination with two fluorogenic pro-DLCs in vitro and in vivo. We prepared a conjugate of another pro-DLC with a clinically approved drug carboplatin and confirmed that its accumulation in mitochondria was higher than that of the free drug. This was reflected in the substantially higher anticancer effect of the conjugate.


Assuntos
Compostos Ferrosos/química , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cátions/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Compostos Ferrosos/farmacologia , Humanos , Mitocôndrias/efeitos dos fármacos , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Rodamina 123/química
15.
Eur J Immunol ; 46(1): 223-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26531064

RESUMO

Neutrophil extracellular trap (NET) formation contributes to gout, autoimmune vasculitis, thrombosis, and atherosclerosis. The outside-in signaling pathway triggering NET formation is unknown. Here, we show that the receptor-interacting protein kinase (RIPK)-1-stabilizers necrostatin-1 or necrostatin-1s and the mixed lineage kinase domain-like (MLKL)-inhibitor necrosulfonamide prevent monosodium urate (MSU) crystal- or PMA-induced NET formation in human and mouse neutrophils. These compounds do not affect PMA- or urate crystal-induced production of ROS. Moreover, neutrophils of chronic granulomatous disease patients are shown to lack PMA-induced MLKL phosphorylation. Genetic deficiency of RIPK3 in mice prevents MSU crystal-induced NET formation in vitro and in vivo. Thus, neutrophil death and NET formation may involve the signaling pathway defining necroptosis downstream of ROS production. These data imply that RIPK1, RIPK3, and MLKL could represent molecular targets in gout or other crystallopathies.


Assuntos
Armadilhas Extracelulares/metabolismo , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais/imunologia , Animais , Western Blotting , Armadilhas Extracelulares/imunologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Neutrófilos/imunologia , Neutrófilos/metabolismo , Fosforilcolina/análogos & derivados , Fosforilcolina/toxicidade , Ácidos Polimetacrílicos/toxicidade , Proteínas Quinases/imunologia , Proteína Serina-Treonina Quinases de Interação com Receptores/imunologia , Ácido Úrico/toxicidade
16.
Angew Chem Int Ed Engl ; 56(49): 15545-15549, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-28994179

RESUMO

Cancer cells produce elevated levels of reactive oxygen species, which has been used to design cancer specific prodrugs. Their activation relies on at least a bimolecular process, in which a prodrug reacts with ROS. However, at low micromolar concentrations of the prodrugs and ROS, the activation is usually inefficient. Herein, we propose and validate a potentially general approach for solving this intrinsic problem of ROS-dependent prodrugs. In particular, known prodrug 4-(N-ferrocenyl-N-benzylaminocarbonyloxymethyl)phenylboronic acid pinacol ester was converted into its lysosome-specific analogue. Since lysosomes contain a higher concentration of active ROS than the cytoplasm, activation of the prodrug was facilitated with respect to the parent compound. Moreover, it was found to exhibit high anticancer activity in a variety of cancer cell lines (IC50 =3.5-7.2 µm) and in vivo (40 mg kg-1 , NK/Ly murine model) but remained weakly toxic towards non-malignant cells (IC50 =15-30 µm).


Assuntos
Antineoplásicos/farmacologia , Lisossomos/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Pró-Fármacos/farmacologia , Espécies Reativas de Oxigênio/antagonistas & inibidores , Animais , Antineoplásicos/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Lisossomos/metabolismo , Camundongos , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Pró-Fármacos/química , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade
17.
Apoptosis ; 21(12): 1327-1335, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27658785

RESUMO

Mitochondria are the cell's power plant that must be in a proper functional state in order to produce the energy necessary for basic cellular functions, such as proliferation. Mitochondria are 'dynamic' in that they are constantly undergoing fission and fusion to remain in a functional state throughout the cell cycle, as well as during other vital processes such as energy supply, cellular respiration and programmed cell death. The mitochondrial fission/fusion machinery is involved in generating young mitochondria, while eliminating old, damaged and non-repairable ones. As a result, the organelles change in shape, size and number throughout the cell cycle. Such precise and accurate balance is maintained by the cytoskeletal transporting system via microtubules, which deliver the mitochondrion from one location to another. During the gap phases G1 and G2, mitochondria form an interconnected network, whereas in mitosis and S-phase fragmentation of the mitochondrial network will take place. However, such balance is lost during neoplastic transformation and autoimmune disorders. Several proteins, such as Drp1, Fis1, Kif-family proteins, Opa1, Bax and mitofusins change in activity and might link the mitochondrial fission/fusion events with processes such as alteration of mitochondrial membrane potential, apoptosis, necrosis, cell cycle arrest, and malignant growth. All this indicates how vital proper functioning of mitochondria is in maintaining cell integrity and preventing carcinogenesis.


Assuntos
Ciclo Celular , Mitocôndrias/fisiologia , Dinâmica Mitocondrial , Animais , Apoptose , Humanos , Mitocôndrias/genética
18.
Chembiochem ; 17(10): 936-52, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-26946458

RESUMO

Blocking the adherence of bacteria to cells is an attractive complementary approach to current antibiotic treatments, which are faced with increasing resistance. This strategy has been particularly studied in the context of urinary tract infections (UTIs), in which the adhesion of pathogenic Escherichia coli strains to uroepithelial cells is prevented by blocking the FimH adhesin expressed at the tips of bacteria organelles called fimbriae. Recently, we extended the antiadhesive concept, showing that potent FimH antagonists can block the attachment of adherent-invasive E. coli (AIEC) colonizing the intestinal mucosa of patients with Crohn's disease (CD). In this work, we designed a small library of analogues of heptyl mannoside (HM), a previously identified nanomolar FimH inhibitor, but one that displays poor antiadhesive effects in vivo. The anomeric oxygen atom was replaced by a sulfur or a methylene group to prevent hydrolysis by intestinal glycosidases, and chemical groups were attached at the end of the alkyl tail. Importantly, a lead compound was shown to reduce AIEC levels in the feces and in the colonic and ileal mucosa after oral administration (10 mg kg(-1) ) in a transgenic mouse model of CD. The compound showed a low bioavailability, preferable in this instance, thus suggesting the possibility of setting up an innovative antiadhesive therapy, based on the water-soluble and non-cytotoxic FimH antagonists developed here, for the CD subpopulation in which AIEC plays a key role.


Assuntos
Aderência Bacteriana/efeitos dos fármacos , Doença de Crohn/terapia , Escherichia coli/efeitos dos fármacos , Mucosa Intestinal/microbiologia , Manosídeos/farmacologia , Adesinas de Escherichia coli/metabolismo , Animais , Disponibilidade Biológica , Peso Corporal/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doença de Crohn/metabolismo , Doença de Crohn/microbiologia , Doença de Crohn/patologia , Cristalografia por Raios X , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Proteínas de Fímbrias/antagonistas & inibidores , Proteínas de Fímbrias/metabolismo , Humanos , Manosídeos/química , Manosídeos/metabolismo , Camundongos , Camundongos Transgênicos , Ligação Proteica , Domínios Proteicos
19.
Biomacromolecules ; 16(6): 1827-36, 2015 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-25961760

RESUMO

n-Heptyl α-d-mannose (HM) is a nanomolar antagonist of FimH, a virulence factor of E. coli. Herein we report on the construction of multivalent HM-based glycopolymers as potent antiadhesives of type 1 piliated E. coli. We investigate glycopolymer/FimH and glycopolymer/bacteria interactions and show that HM-based glycopolymers efficiently inhibit bacterial adhesion and disrupt established cell-bacteria interactions in vitro at very low concentration (0.1 µM on a mannose unit basis). On a valency-corrected basis, HM-based glycopolymers are, respectively, 10(2) and 10(6) times more potent than HM and d-mannose for their capacity to disrupt the binding of adherent-invasive E. coli to T84 intestinal epithelial cells. Finally, we demonstrate that the antiadhesive capacities of HM-based glycopolymers are preserved ex vivo in the colonic loop of a transgenic mouse model of Crohn's disease. All together, these results underline the promising scope of HM-based macromolecular ligands for the antiadhesive treatment of E. coli induced inflammatory bowel diseases.


Assuntos
Proteínas de Fímbrias/antagonistas & inibidores , Mucosa Intestinal/efeitos dos fármacos , Polissacarídeos Bacterianos/farmacologia , Adesinas de Escherichia coli , Animais , Adesão Celular/efeitos dos fármacos , Escherichia coli/patogenicidade , Células HeLa , Heptanol/química , Humanos , Doenças Inflamatórias Intestinais/microbiologia , Manose/química , Camundongos , Polissacarídeos Bacterianos/química
20.
Biomed Chromatogr ; 29(3): 328-32, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24992710

RESUMO

Sialation of cell surface is known to be tightly connected with tumorigenicity, invasiveness, metastatic potential and clearance of aged cells, while sialation of immunoglobulin G (IgG) molecules determines their anti-inflammatory properties. Recently, we have found for the first time IgG-antibodies possessing sialidase-like activity (sialylic abzyme) in blood serum of multiple myeloma and systemic lupus erythematosis patients. This abzyme was detected in a pool of IgGs purified by a typical procedure including immunoglobulin's precipitation with ammonium sulfate and following chromatography on protein G-Sepharose column. Here we describe a novel matrix for affinity purification of sialylic abzyme that is based on using bovine submandibular gland mucin conjugated to Sepharose matrix (mucin-Sepharose). This matrix preferentially binds sialidase-like IgGs from a pool of sialidase-active fraction of proteins precipitated with 50% ammonium sulfate from blood serum of the systemic lupus erythematosis patients. That allowed us to develop a new scheme of double-step chromatography purification of sialidase-like IgGs from human blood serum.


Assuntos
Cromatografia de Afinidade/métodos , Imunoglobulina G/isolamento & purificação , Imunoglobulina G/metabolismo , Soro/química , Animais , Anticorpos Catalíticos , Bovinos , Química Clínica/métodos , Humanos , Vasculite Associada ao Lúpus do Sistema Nervoso Central/sangue , Mucinas/química , Neuraminidase/metabolismo , Sefarose/química , Glândula Submandibular/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA