Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Atmos Environ (1994) ; 254: 118322, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34035656

RESUMO

The COVID-19 pandemic brought about national restrictions on people's movements, in effect commencing a socially engineered transport emission reduction experiment. In New Zealand during the most restrictive alert level (Level 4), roadside concentrations of nitrogen dioxide (NO2) were reduced 48-54% compared to Business-as-usual (BAU) values. NO2 concentrations rapidly returned to near mean levels as the alert levels decreased and restrictions eased. PM10 and PM2.5 responded differently to NO2 during the different alert levels. This is due to particulates having multiple sources, many of natural origin and therefore less influenced by human activity. PM10 and PM2.5 concentrations were reduced during alert level 4 but to a lesser extent than NO2 and with more variability across regions. Particulate concentrations increased notably during alert level 2 when many airsheds reported concentrations above the BAU means. To provide robust BAU reference concentrations, simple 5-year means were calculated along with predictions from machine learning modelling that, in effect, removed the influence of meteorology on observed concentrations. The results of this study show that latter method was found to be more closely aligned to observed values for NO2 as well as PM2.5 and PM10 away from coastal regions.

2.
Sci Total Environ ; 551-552: 116-26, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26874768

RESUMO

Nitrogen is one of the most important ecosystem nutrients and often its availability limits net primary production as well as stabilization of soil organic matter. The long-term storage of nitrogen-containing organic matter in soils was classically attributed to chemical complexity of plant and microbial residues that retarded microbial degradation. Recent advances have revised this framework, with the understanding that persistent soil organic matter consists largely of chemically labile, microbially processed organic compounds. Chemical bonding to minerals and physical protection in aggregates are more important to long-term (i.e., centuries to millennia) preservation of these organic compounds that contain the bulk of soil nitrogen rather than molecular complexity, with the exception of nitrogen in pyrogenic organic matter. This review examines for the first time the factors and mechanisms at each stage of movement into long-term storage that influence the sequestration of organic nitrogen in the mineral soil of natural temperate ecosystems. Because the factors which govern persistence are different under this newly accepted paradigm we examine the policy and management implications that are altered, such as critical load considerations, nitrogen saturation and mitigation consequences. Finally, it emphasizes how essential it is for this important but underappreciated pool to be better quantified and incorporated into policy and management decisions, especially given the lack of evidence for many soils having a finite capacity to sequester nitrogen.


Assuntos
Política Ambiental , Ciclo do Nitrogênio , Nitrogênio/análise , Solo/química , Ecossistema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA