Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 707: 135792, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-31865079

RESUMO

An increase in anthropogenic activities in coastal regions can put at risk their flora and fauna and their ecosystem services. Therefore, it is important to evaluate possible impacts. In particular, we need to understand the links between contaminants concentrations and the hydrodynamic patterns of these highly productive regions to anticipate the effects of contaminants in the environment. Towards that aim there is the need to carry out regular campaigns to monitor the evolution of the coastal systems. In this work we analyse in-situ measurements of physico-chemical parameters, and look for possible relations between observed contaminants patterns and estuarine hydrodynamics. Data collected in the Douro estuary, one of the main estuarine regions of the Iberian western coast, revealed the presence of 5 hazardous and noxious substances (HNS), 14 polycyclic aromatic hydrocarbons (PAHs) and 6 trace metals in water and sediment samples. Water temperature and salinity analysis revealed a strong variability, which can affect the water solubility properties and the organisms' tolerance to certain toxins. A relationship between the salinity and the HNS and PAHs concentrations was found, caused by the existence of a salt-wedge that triggers the salting-out effect. Sinker contaminants (PAHs and trace metals) can be re-suspended both during low and high flow conditions associated with the salt-wedge and with strong river flows. Floater contaminants (HNS) are completely depended on the tide, which has the capacity to distribute them through the entire estuary, during low river flow regimes. However, strong river flows, with associated river plumes, can distribute both sinker and floater contaminants to the coastal region trapping them over the inner-shelf. The results clearly show that hydrodynamic patterns are a major driver for contaminants dispersion and pathways in coastal areas, inducing harmful effects to the flora and fauna and, consequently, to the ecosystem services of these regions.

2.
Planta ; 223(5): 1068-80, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16292661

RESUMO

The wide range of plant responses to ammonium nutrition can be used to study the way ammonium interferes with plant metabolism and to assess some characteristics related with ammonium tolerance by plants. In this work we investigated the hypothesis of plant tolerance to ammonium being related with the plants' capacity to maintain high levels of inorganic nitrogen assimilation in the roots. Plants of several species (Spinacia oleracea L., Lycopersicon esculentum L., Lactuca sativa L., Pisum sativum L. and Lupinus albus L.) were grown in the presence of distinct concentrations (0.5, 1.5, 3 and 6 mM) of nitrate and ammonium. The relative contributions of the activity of the key enzymes glutamine synthetase (GS; under light and dark conditions) and glutamate dehydrogenase (GDH) were determined. The main plant organs of nitrogen assimilation (root or shoot) to plant tolerance to ammonium were assessed. The results show that only plants that are able to maintain high levels of GS activity in the dark (either in leaves or in roots) and high root GDH activities accumulate equal amounts of biomass independently of the nitrogen source available to the root medium and thus are ammonium tolerant. Plant species with high GS activities in the dark coincide with those displaying a high capacity for nitrogen metabolism in the roots. Therefore, the main location of nitrogen metabolism (shoots or roots) and the levels of GS activity in the dark are an important strategy for plant ammonium tolerance. The relative contribution of each of these parameters to species tolerance to ammonium is assessed. The efficient sequestration of ammonium in roots, presumably in the vacuoles, is considered as an additional mechanism contributing to plant tolerance to ammonium nutrition.


Assuntos
Glutamato-Amônia Ligase/fisiologia , Plantas/metabolismo , Compostos de Amônio Quaternário/metabolismo , Metabolismo dos Carboidratos , Glutamato Desidrogenase/metabolismo , Glutamato-Amônia Ligase/metabolismo , Lactuca/metabolismo , Lupinus/metabolismo , Solanum lycopersicum/metabolismo , Nitrato Redutase/metabolismo , Nitratos/metabolismo , Pisum sativum/metabolismo , Desenvolvimento Vegetal , Raízes de Plantas/metabolismo , Spinacia oleracea/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA