Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neuroimage ; 295: 120636, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38777219

RESUMO

Diversity in brain health is influenced by individual differences in demographics and cognition. However, most studies on brain health and diseases have typically controlled for these factors rather than explored their potential to predict brain signals. Here, we assessed the role of individual differences in demographics (age, sex, and education; n = 1298) and cognition (n = 725) as predictors of different metrics usually used in case-control studies. These included power spectrum and aperiodic (1/f slope, knee, offset) metrics, as well as complexity (fractal dimension estimation, permutation entropy, Wiener entropy, spectral structure variability) and connectivity (graph-theoretic mutual information, conditional mutual information, organizational information) from the source space resting-state EEG activity in a diverse sample from the global south and north populations. Brain-phenotype models were computed using EEG metrics reflecting local activity (power spectrum and aperiodic components) and brain dynamics and interactions (complexity and graph-theoretic measures). Electrophysiological brain dynamics were modulated by individual differences despite the varied methods of data acquisition and assessments across multiple centers, indicating that results were unlikely to be accounted for by methodological discrepancies. Variations in brain signals were mainly influenced by age and cognition, while education and sex exhibited less importance. Power spectrum activity and graph-theoretic measures were the most sensitive in capturing individual differences. Older age, poorer cognition, and being male were associated with reduced alpha power, whereas older age and less education were associated with reduced network integration and segregation. Findings suggest that basic individual differences impact core metrics of brain function that are used in standard case-control studies. Considering individual variability and diversity in global settings would contribute to a more tailored understanding of brain function.


Assuntos
Encéfalo , Cognição , Eletroencefalografia , Humanos , Masculino , Feminino , Adulto , Cognição/fisiologia , Pessoa de Meia-Idade , Encéfalo/fisiologia , Idoso , Adulto Jovem , Individualidade , Adolescente , Fatores Etários , Envelhecimento/fisiologia
2.
Alzheimers Dement ; 20(2): 925-940, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37823470

RESUMO

INTRODUCTION: Verbal fluency tasks are common in Alzheimer's disease (AD) assessments. Yet, standard valid response counts fail to reveal disease-specific semantic memory patterns. Here, we leveraged automated word-property analysis to capture neurocognitive markers of AD vis-à-vis behavioral variant frontotemporal dementia (bvFTD). METHODS: Patients and healthy controls completed two fluency tasks. We counted valid responses and computed each word's frequency, granularity, neighborhood, length, familiarity, and imageability. These features were used for group-level discrimination, patient-level identification, and correlations with executive and neural (magnetic resonanance imaging [MRI], functional MRI [fMRI], electroencephalography [EEG]) patterns. RESULTS: Valid responses revealed deficits in both disorders. Conversely, frequency, granularity, and neighborhood yielded robust group- and subject-level discrimination only in AD, also predicting executive outcomes. Disease-specific cortical thickness patterns were predicted by frequency in both disorders. Default-mode and salience network hypoconnectivity, and EEG beta hypoconnectivity, were predicted by frequency and granularity only in AD. DISCUSSION: Word-property analysis of fluency can boost AD characterization and diagnosis. HIGHLIGHTS: We report novel word-property analyses of verbal fluency in AD and bvFTD. Standard valid response counts captured deficits and brain patterns in both groups. Specific word properties (e.g., frequency, granularity) were altered only in AD. Such properties predicted cognitive and neural (MRI, fMRI, EEG) patterns in AD. Word-property analysis of fluency can boost AD characterization and diagnosis.


Assuntos
Doença de Alzheimer , Demência Frontotemporal , Humanos , Doença de Alzheimer/diagnóstico , Testes Neuropsicológicos , Encéfalo/diagnóstico por imagem , Memória , Imageamento por Ressonância Magnética , Demência Frontotemporal/diagnóstico , Transtornos da Memória
3.
Neurobiol Dis ; 183: 106171, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37257663

RESUMO

Although social functioning relies on working memory, whether a social-specific mechanism exists remains unclear. This undermines the characterization of neurodegenerative conditions with both working memory and social deficits. We assessed working memory domain-specificity across behavioral, electrophysiological, and neuroimaging dimensions in 245 participants. A novel working memory task involving social and non-social stimuli with three load levels was assessed across controls and different neurodegenerative conditions with recognized impairments in: working memory and social cognition (behavioral-variant frontotemporal dementia); general cognition (Alzheimer's disease); and unspecific patterns (Parkinson's disease). We also examined resting-state theta oscillations and functional connectivity correlates of working memory domain-specificity. Results in controls and all groups together evidenced increased working memory demands for social stimuli associated with frontocinguloparietal theta oscillations and salience network connectivity. Canonical frontal theta oscillations and executive-default mode network anticorrelation indexed non-social stimuli. Behavioral-variant frontotemporal dementia presented generalized working memory deficits related to posterior theta oscillations, with social stimuli linked to salience network connectivity. In Alzheimer's disease, generalized working memory impairments were related to temporoparietal theta oscillations, with non-social stimuli linked to the executive network. Parkinson's disease showed spared working memory performance and canonical brain correlates. Findings support a social-specific working memory and related disease-selective pathophysiological mechanisms.


Assuntos
Doença de Alzheimer , Demência Frontotemporal , Doença de Parkinson , Humanos , Memória de Curto Prazo , Doença de Alzheimer/diagnóstico por imagem , Doença de Parkinson/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Testes Neuropsicológicos
4.
Neurobiol Dis ; 179: 106047, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36841423

RESUMO

Brain functional connectivity in dementia has been assessed with dissimilar EEG connectivity metrics and estimation procedures, thereby increasing results' heterogeneity. In this scenario, joint analyses integrating information from different metrics may allow for a more comprehensive characterization of brain functional interactions in different dementia subtypes. To test this hypothesis, resting-state electroencephalogram (rsEEG) was recorded in individuals with Alzheimer's Disease (AD), behavioral variant frontotemporal dementia (bvFTD), and healthy controls (HCs). Whole-brain functional connectivity was estimated in the EEG source space using 101 different types of functional connectivity, capturing linear and nonlinear interactions in both time and frequency-domains. Multivariate machine learning and progressive feature elimination was run to discriminate AD from HCs, and bvFTD from HCs, based on joint analyses of i) EEG frequency bands, ii) complementary frequency-domain metrics (e.g., instantaneous, lagged, and total connectivity), and iii) time-domain metrics with different linearity assumption (e.g., Pearson correlation coefficient and mutual information). <10% of all possible connections were responsible for the differences between patients and controls, and atypical connectivity was never captured by >1/4 of all possible connectivity measures. Joint analyses revealed patterns of hypoconnectivity (patientsHCs) in both groups was mainly identified in frontotemporal regions. These atypicalities were differently captured by frequency- and time-domain connectivity metrics, in a bandwidth-specific fashion. The multi-metric representation of source space whole-brain functional connectivity evidenced the inadequacy of single-metric approaches, and resulted in a valid alternative for the selection problem in EEG connectivity. These joint analyses reveal patterns of brain functional interdependence that are overlooked with single metrics approaches, contributing to a more reliable and interpretable description of atypical functional connectivity in neurodegeneration.


Assuntos
Doença de Alzheimer , Encéfalo , Conectoma , Demência Frontotemporal , Vias Neurais , Idoso , Feminino , Humanos , Masculino , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Eletroencefalografia , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/fisiopatologia , Demência Frontotemporal/diagnóstico por imagem , Demência Frontotemporal/metabolismo , Demência Frontotemporal/fisiopatologia , Imageamento por Ressonância Magnética , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/fisiopatologia , Reprodutibilidade dos Testes , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/fisiopatologia
5.
Brain ; 145(3): 1052-1068, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-34529034

RESUMO

Social feedback can selectively enhance learning in diverse domains. Relevant neurocognitive mechanisms have been studied mainly in healthy persons, yielding correlational findings. Neurodegenerative lesion models, coupled with multimodal brain measures, can complement standard approaches by revealing direct multidimensional correlates of the phenomenon. To this end, we assessed socially reinforced and non-socially reinforced learning in 40 healthy participants as well as persons with behavioural variant frontotemporal dementia (n = 21), Parkinson's disease (n = 31) and Alzheimer's disease (n = 20). These conditions are typified by predominant deficits in social cognition, feedback-based learning and associative learning, respectively, although all three domains may be partly compromised in the other conditions. We combined a validated behavioural task with ongoing EEG signatures of implicit learning (medial frontal negativity) and offline MRI measures (voxel-based morphometry). In healthy participants, learning was facilitated by social feedback relative to non-social feedback. In comparison with controls, this effect was specifically impaired in behavioural variant frontotemporal dementia and Parkinson's disease, while unspecific learning deficits (across social and non-social conditions) were observed in Alzheimer's disease. EEG results showed increased medial frontal negativity in healthy controls during social feedback and learning. Such a modulation was selectively disrupted in behavioural variant frontotemporal dementia. Neuroanatomical results revealed extended temporo-parietal and fronto-limbic correlates of socially reinforced learning, with specific temporo-parietal associations in behavioural variant frontotemporal dementia and predominantly fronto-limbic regions in Alzheimer's disease. In contrast, non-socially reinforced learning was consistently linked to medial temporal/hippocampal regions. No associations with cortical volume were found in Parkinson's disease. Results are consistent with core social deficits in behavioural variant frontotemporal dementia, subtle disruptions in ongoing feedback-mechanisms and social processes in Parkinson's disease and generalized learning alterations in Alzheimer's disease. This multimodal approach highlights the impact of different neurodegenerative profiles on learning and social feedback. Our findings inform a promising theoretical and clinical agenda in the fields of social learning, socially reinforced learning and neurodegeneration.


Assuntos
Doença de Alzheimer , Demência Frontotemporal , Doenças Neurodegenerativas , Doença de Parkinson , Doença de Alzheimer/patologia , Encéfalo/patologia , Demência Frontotemporal/patologia , Humanos , Doenças Neurodegenerativas/patologia , Doença de Parkinson/patologia
6.
Cereb Cortex ; 33(2): 403-420, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-35253864

RESUMO

BACKGROUND: Processing of linguistic negation has been associated to inhibitory brain mechanisms. However, no study has tapped this link via multimodal measures in patients with core inhibitory alterations, a critical approach to reveal direct neural correlates and potential disease markers. METHODS: Here we examined oscillatory, neuroanatomical, and functional connectivity signatures of a recently reported Go/No-go negation task in healthy controls and behavioral variant frontotemporal dementia (bvFTD) patients, typified by primary and generalized inhibitory disruptions. To test for specificity, we also recruited persons with Alzheimer's disease (AD), a disease involving frequent but nonprimary inhibitory deficits. RESULTS: In controls, negative sentences in the No-go condition distinctly involved frontocentral delta (2-3 Hz) suppression, a canonical inhibitory marker. In bvFTD patients, this modulation was selectively abolished and significantly correlated with the volume and functional connectivity of regions supporting inhibition (e.g. precentral gyrus, caudate nucleus, and cerebellum). Such canonical delta suppression was preserved in the AD group and associated with widespread anatomo-functional patterns across non-inhibitory regions. DISCUSSION: These findings suggest that negation hinges on the integrity and interaction of spatiotemporal inhibitory mechanisms. Moreover, our results reveal potential neurocognitive markers of bvFTD, opening a new agenda at the crossing of cognitive neuroscience and behavioral neurology.


Assuntos
Doença de Alzheimer , Demência Frontotemporal , Humanos , Demência Frontotemporal/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Inibição Psicológica , Testes Neuropsicológicos , Imageamento por Ressonância Magnética
7.
Cereb Cortex ; 32(16): 3377-3391, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34875690

RESUMO

Neurodegeneration has multiscalar impacts, including behavioral, neuroanatomical, and neurofunctional disruptions. Can disease-differential alterations be captured across such dimensions using naturalistic stimuli? To address this question, we assessed comprehension of four naturalistic stories, highlighting action, nonaction, social, and nonsocial events, in Parkinson's disease (PD) and behavioral variant frontotemporal dementia (bvFTD) relative to Alzheimer's disease patients and healthy controls. Text-specific correlates were evaluated via voxel-based morphometry, spatial (fMRI), and temporal (hd-EEG) functional connectivity. PD patients presented action-text deficits related to the volume of action-observation regions, connectivity across motor-related and multimodal-semantic hubs, and frontal hd-EEG hypoconnectivity. BvFTD patients exhibited social-text deficits, associated with atrophy and spatial connectivity patterns along social-network hubs, alongside right frontotemporal hd-EEG hypoconnectivity. Alzheimer's disease patients showed impairments in all stories, widespread atrophy and spatial connectivity patterns, and heightened occipitotemporal hd-EEG connectivity. Our framework revealed disease-specific signatures across behavioral, neuroanatomical, and neurofunctional dimensions, highlighting the sensitivity and specificity of a single naturalistic task. This investigation opens a translational agenda combining ecological approaches and multimodal cognitive neuroscience for the study of neurodegeneration.


Assuntos
Doença de Alzheimer , Demência Frontotemporal , Doenças Neurodegenerativas , Doença de Alzheimer/patologia , Atrofia/patologia , Biomarcadores , Encéfalo , Demência Frontotemporal/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Doenças Neurodegenerativas/diagnóstico por imagem , Testes Neuropsicológicos
8.
J Neurosci ; 41(19): 4276-4292, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33827935

RESUMO

Recent frameworks in cognitive neuroscience and behavioral neurology underscore interoceptive priors as core modulators of negative emotions. However, the field lacks experimental designs manipulating the priming of emotions via interoception and exploring their multimodal signatures in neurodegenerative models. Here, we designed a novel task that involves interoceptive and control-exteroceptive priming conditions followed by post-interoception and post-exteroception facial emotion recognition (FER). We recruited 114 participants, including healthy controls (HCs) as well as patients with behavioral variant frontotemporal dementia (bvFTD), Parkinson's disease (PD), and Alzheimer's disease (AD). We measured online EEG modulations of the heart-evoked potential (HEP), and associations with both brain structural and resting-state functional connectivity patterns. Behaviorally, post-interoception negative FER was enhanced in HCs but selectively disrupted in bvFTD and PD, with AD presenting generalized disruptions across emotion types. Only bvFTD presented impaired interoceptive accuracy. Increased HEP modulations during post-interoception negative FER was observed in HCs and AD, but not in bvFTD or PD patients. Across all groups, post-interoception negative FER correlated with the volume of the insula and the ACC. Also, negative FER was associated with functional connectivity along the (a) salience network in the post-interoception condition, and along the (b) executive network in the post-exteroception condition. These patterns were selectively disrupted in bvFTD (a) and PD (b), respectively. Our approach underscores the multidimensional impact of interoception on emotion, while revealing a specific pathophysiological marker of bvFTD. These findings inform a promising theoretical and clinical agenda in the fields of nteroception, emotion, allostasis, and neurodegeneration.SIGNIFICANCE STATEMENT We examined whether and how emotions are primed by interoceptive states combining multimodal measures in healthy controls and neurodegenerative models. In controls, negative emotion recognition and ongoing HEP modulations were increased after interoception. These patterns were selectively disrupted in patients with atrophy across key interoceptive-emotional regions (e.g., the insula and the cingulate in frontotemporal dementia, frontostriatal networks in Parkinson's disease), whereas persons with Alzheimer's disease presented generalized emotional processing abnormalities with preserved interoceptive mechanisms. The integration of both domains was associated with the volume and connectivity (salience network) of canonical interoceptive-emotional hubs, critically involving the insula and the anterior cingulate. Our study reveals multimodal markers of interoceptive-emotional priming, laying the groundwork for new agendas in cognitive neuroscience and behavioral neurology.


Assuntos
Emoções/fisiologia , Reconhecimento Facial , Interocepção/fisiologia , Degeneração Neural/fisiopatologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/psicologia , Mapeamento Encefálico , Eletroencefalografia , Potenciais Evocados/fisiologia , Feminino , Demência Frontotemporal/fisiopatologia , Demência Frontotemporal/psicologia , Humanos , Masculino , Pessoa de Meia-Idade , Vias Neurais/fisiologia , Doença de Parkinson/fisiopatologia , Doença de Parkinson/psicologia , Desempenho Psicomotor/fisiologia
9.
Neurobiol Dis ; 175: 105918, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36375407

RESUMO

Brain functional networks have been traditionally studied considering only interactions between pairs of regions, neglecting the richer information encoded in higher orders of interactions. In consequence, most of the connectivity studies in neurodegeneration and dementia use standard pairwise metrics. Here, we developed a genuine high-order functional connectivity (HOFC) approach that captures interactions between 3 or more regions across spatiotemporal scales, delivering a more biologically plausible characterization of the pathophysiology of neurodegeneration. We applied HOFC to multimodal (electroencephalography [EEG], and functional magnetic resonance imaging [fMRI]) data from patients diagnosed with behavioral variant of frontotemporal dementia (bvFTD), Alzheimer's disease (AD), and healthy controls. HOFC revealed large effect sizes, which, in comparison to standard pairwise metrics, provided a more accurate and parsimonious characterization of neurodegeneration. The multimodal characterization of neurodegeneration revealed hypo and hyperconnectivity on medium to large-scale brain networks, with a larger contribution of the former. Regions as the amygdala, the insula, and frontal gyrus were associated with both effects, suggesting potential compensatory processes in hub regions. fMRI revealed hypoconnectivity in AD between regions of the default mode, salience, visual, and auditory networks, while in bvFTD between regions of the default mode, salience, and somatomotor networks. EEG revealed hypoconnectivity in the γ band between frontal, limbic, and sensory regions in AD, and in the δ band between frontal, temporal, parietal and posterior areas in bvFTD, suggesting additional pathophysiological processes that fMRI alone can not capture. Classification accuracy was comparable with standard biomarkers and robust against confounders such as sample size, age, education, and motor artifacts (from fMRI and EEG). We conclude that high-order interactions provide a detailed, EEG- and fMRI compatible, biologically plausible, and psychopathological-specific characterization of different neurodegenerative conditions.


Assuntos
Doença de Alzheimer , Demência Frontotemporal , Humanos , Encéfalo/patologia , Demência Frontotemporal/patologia , Doença de Alzheimer/patologia , Imageamento por Ressonância Magnética , Mapeamento Encefálico
10.
Brain Cogn ; 156: 105831, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34922210

RESUMO

Patients with atrophy in motor brain regions exhibit selective deficits in processing action-related meanings, suggesting a link between movement conceptualization and the amount of regional tissue. Here we examine such a relation in a unique opposite model: a rare patient with a double cortex (due to subcortical band heterotopia) in primary/supplementary motor regions, and no double cortex in multimodal semantic regions. We measured behavioral performance in action- and object-concept processing as well and resting-state functional connectivity. Both dimensions involved comparisons with healthy controls. Results revealed preserved accuracy in action and object categories for the patient. However, unlike controls, the patient exhibited faster performance for action than object concepts, a difference that was uninfluenced by general cognitive abilities. Moreover, this pattern was accompanied by heightened functional connectivity between the bilateral primary motor cortices. This suggests that a functionally active double motor cortex may entail action-processing advantages. Our findings offer new constraints for models of action semantics and motor-region function at large.


Assuntos
Lissencefalias Clássicas e Heterotopias Subcorticais em Banda , Córtex Motor , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética/métodos , Semântica
11.
J Cogn Neurosci ; 33(8): 1413-1427, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34496378

RESUMO

Behavioral embodied research shows that words evoking limb-specific meanings can affect responses performed with the corresponding body part. However, no study has explored this phenomenon's neural dynamics under implicit processing conditions, let alone by disentangling its conceptual and motoric stages. Here, we examined whether the blending of hand actions and manual action verbs, relative to nonmanual action verbs and nonaction verbs, modulates electrophysiological markers of semantic integration (N400) and motor-related cortical potentials during a lexical decision task. Relative to both other categories, manual action verbs involved reduced posterior N400 amplitude and greater modulations of frontal motor-related cortical potentials. Such effects overlapped in a window of ∼380-440 msec after word presentation and ∼180 msec before response execution, revealing the possible time span in which both semantic and action-related stages reach maximal convergence. These results allow refining current models of motor-language coupling while affording new insights on embodied dynamics at large.


Assuntos
Idioma , Semântica , Eletroencefalografia , Potenciais Evocados , Feminino , Humanos , Masculino , Movimento
12.
Neuroimage ; 235: 117998, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33789131

RESUMO

The pressing call to detect sensitive cognitive markers of frontal lobe epilepsy (FLE) remains poorly addressed. Standard frameworks prove nosologically unspecific (as they reveal deficits that also emerge across other epilepsy subtypes), possess low ecological validity, and are rarely supported by multimodal neuroimaging assessments. To bridge these gaps, we examined naturalistic action and non-action text comprehension, combined with structural and functional connectivity measures, in 19 FLE patients, 19 healthy controls, and 20 posterior cortex epilepsy (PCE) patients. Our analyses integrated inferential statistics and data-driven machine-learning classifiers. FLE patients were selectively and specifically impaired in action comprehension, irrespective of their neuropsychological profile. These deficits selectively and specifically correlated with (a) reduced integrity of the anterior thalamic radiation, a subcortical structure underlying motoric and action-language processing as well as epileptic seizure spread in this subtype; and (b) hypoconnectivity between the primary motor cortex and the left-parietal/supramarginal regions, two putative substrates of action-language comprehension. Moreover, machine-learning classifiers based on the above neurocognitive measures yielded 75% accuracy rates in discriminating individual FLE patients from both controls and PCE patients. Briefly, action-text assessments, combined with structural and functional connectivity measures, seem to capture ecological cognitive deficits that are specific to FLE, opening new avenues for discriminatory characterizations among epilepsy types.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico , Epilepsia do Lobo Frontal/diagnóstico , Idioma , Substância Branca/diagnóstico por imagem , Córtex Cerebral/patologia , Córtex Cerebral/fisiopatologia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/patologia , Disfunção Cognitiva/fisiopatologia , Conectoma , Imagem de Tensor de Difusão , Epilepsia do Lobo Frontal/complicações , Epilepsia do Lobo Frontal/patologia , Epilepsia do Lobo Frontal/fisiopatologia , Humanos , Testes de Linguagem , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Imagem Multimodal , Testes Neuropsicológicos , Substância Branca/patologia , Substância Branca/fisiopatologia
13.
Hum Brain Mapp ; 42(5): 1227-1242, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33325575

RESUMO

An accruing body of research has shown that interoception (the sensing of signals from the body's internal milieu) relies on both a direct route (afforded by the vagus nerve) and a secondary route (supported by somatosensory mechanisms). However, no study has causally tested the differential role of these pathways, let alone via direct stimulation. To bridge this gap, we tested whether multidimensional signatures of interoception are modulated by noninvasive vagus nerve stimulation (nVNS). Sixty-three participants were divided into an nVNS and a sham-stimulation group. Before and after stimulation, both groups performed a validated heartbeat detection (HBD) task including a genuinely interoceptive condition (monitoring one's own heartbeat) and a control exteroceptive condition (tracking an aurally presented heartbeat). Electroencephalographic signals were obtained during both conditions to examine modulations of the heartbeat-evoked potential (HEP). Moreover, before and after stimulation, participants were asked to complete a somatosensory heartbeat localization task. Results from the interoceptive condition revealed that, after treatment, only the nVNS group exhibited improved performance and greater HEP modulations. No behavioral differences were found for the exteroceptive control condition, which was nonetheless associated with significant HEP modulations. Finally, no between-group differences were observed regarding the localization of the heartbeat sensations or relevant cardiodynamic variables (heart rate and or heart rate variability). Taken together, these results constitute unprecedented evidence that the vagus nerve plays a direct role in neurovisceral integration during interoception. This finding can constrain mechanistic models of the domain while informing a promising transdiagnostic agenda for interoceptive impairments across neuropsychiatric conditions.


Assuntos
Eletroencefalografia , Potenciais Evocados/fisiologia , Frequência Cardíaca/fisiologia , Interocepção/fisiologia , Estimulação do Nervo Vago , Adulto , Eletrocardiografia , Feminino , Humanos , Masculino , Adulto Jovem
14.
Cereb Cortex ; 30(11): 6051-6068, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32577713

RESUMO

In construing meaning, the brain recruits multimodal (conceptual) systems and embodied (modality-specific) mechanisms. Yet, no consensus exists on how crucial the latter are for the inception of semantic distinctions. To address this issue, we combined electroencephalographic (EEG) and intracranial EEG (iEEG) to examine when nouns denoting facial body parts (FBPs) and nonFBPs are discriminated in face-processing and multimodal networks. First, FBP words increased N170 amplitude (a hallmark of early facial processing). Second, they triggered fast (~100 ms) activity boosts within the face-processing network, alongside later (~275 ms) effects in multimodal circuits. Third, iEEG recordings from face-processing hubs allowed decoding ~80% of items before 200 ms, while classification based on multimodal-network activity only surpassed ~70% after 250 ms. Finally, EEG and iEEG connectivity between both networks proved greater in early (0-200 ms) than later (200-400 ms) windows. Collectively, our findings indicate that, at least for some lexico-semantic categories, meaning is construed through fast reenactments of modality-specific experience.


Assuntos
Encéfalo/fisiologia , Compreensão/fisiologia , Idioma , Modelos Neurológicos , Semântica , Adulto , Mapeamento Encefálico/métodos , Eletrocorticografia/métodos , Eletroencefalografia/métodos , Face , Feminino , Humanos , Masculino
15.
Neuroimage ; 216: 116820, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32278096

RESUMO

Do embodied semantic systems play different roles depending on when and how well a given language was learned? Emergent evidence suggests that this is the case for isolated, decontextualized stimuli, but no study has addressed the issue considering naturalistic narratives. Seeking to bridge this gap, we assessed motor-system dynamics in 26 Spanish-English bilinguals as they engaged in free, unconstrained reading of naturalistic action texts (ATs, highlighting the characters' movements) and neutral texts (NTs, featuring low motility) in their first and second language (L1, L2). To explore functional connectivity spread over each reading session, we recorded ongoing high-density electroencephalographic signals and subjected them to functional connectivity analysis via a spatial clustering approach. Results showed that, in L1, AT (relative to NT) reading involved increased connectivity between left and right central electrodes consistently implicated in action-related processes, as well as distinct source-level modulations in motor regions. In L2, despite null group-level effects, enhanced motor-related connectivity during AT reading correlated positively with L2 proficiency and negatively with age of L2 learning. Taken together, these findings suggest that action simulations during unconstrained narrative reading involve neural couplings between motor-sensitive mechanisms, in proportion to how consolidated a language is. More generally, such evidence addresses recent calls to test the ecological validity of motor-resonance effects while offering new insights on their relation with experiential variables.


Assuntos
Córtex Cerebral/fisiologia , Conectoma , Eletroencefalografia , Atividade Motora/fisiologia , Multilinguismo , Leitura , Adulto , Conectoma/métodos , Eletroencefalografia/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Semântica , Adulto Jovem
16.
Neuroimage ; 212: 116677, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32101777

RESUMO

Interoception (the sensing of inner-body signals) is a multi-faceted construct with major relevance for basic and clinical neuroscience research. However, the neurocognitive signatures of this domain (cutting across behavioral, electrophysiological, and fMRI connectivity levels) are rarely reported in convergent or systematic fashion. Additionally, various controversies in the field might reflect the caveats of standard interoceptive accuracy (IA) indexes, mainly based on heartbeat detection (HBD) tasks. Here we profit from a novel IA index (md) to provide a convergent multidimensional and multi-feature approach to cardiac interoception. We found that outcomes from our IA-md index are associated with -and predicted by- canonical markers of interoception, including the hd-EEG-derived heart-evoked potential (HEP), fMRI functional connectivity within interoceptive hubs (insular, somatosensory, and frontal networks), and socio-emotional skills. Importantly, these associations proved more robust than those involving current IA indexes. Furthermore, this pattern of results persisted when taking into consideration confounding variables (gender, age, years of education, and executive functioning). This work has relevant theoretical and clinical implications concerning the characterization of cardiac interoception and its assessment in heterogeneous samples, such as those composed of neuropsychiatric patients.


Assuntos
Encéfalo/fisiologia , Potenciais Evocados/fisiologia , Frequência Cardíaca , Interocepção/fisiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Conscientização/fisiologia , Eletroencefalografia , Feminino , Coração , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Adulto Jovem
17.
Psychosom Med ; 82(9): 850-861, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33003072

RESUMO

OBJECTIVE: Neurological nosology, based on categorical systems, has largely ignored dimensional aspects of neurocognitive impairments. Transdiagnostic dimensional approaches of interoception (the sensing of visceral signals) may improve the descriptions of cross-pathological symptoms at behavioral, electrophysiological, and anatomical levels. Alterations of cardiac interoception (encompassing multidimensional variables such as accuracy, learning, sensibility, and awareness) and its neural correlates (electrophysiological markers, imaging-based anatomical and functional connectivity) have been proposed as critical across disparate neurological disorders. However, no study has examined the specific impact of neural (relative to autonomic) disturbances of cardiac interoception or their differential manifestations across neurological conditions. METHODS: Here, we used a computational approach to classify and evaluate which markers of cardiac interoception (behavioral, metacognitive, electrophysiological, volumetric, or functional) offer the best discrimination between neurological conditions and cardiac (hypertensive) disease (model 1), and among neurological conditions (Alzheimer's disease, frontotemporal dementia, multiple sclerosis, and brain stroke; model 2). In total, the study comprised 52 neurological patients (mean [standard deviation] age = 55.1 [17.3] years; 37 women), 25 cardiac patients (age = 66.2 [9.1] years; 13 women), and 72 healthy controls (age = 52.65 [17.1] years; 50 women). RESULTS: Cardiac interoceptive outcomes successfully classified between neurological and cardiac conditions (model 1: >80% accuracy) but not among neurological conditions (model 2: 53% accuracy). Behavioral cardiac interoceptive alterations, although present in all conditions, were powerful in differentiating between neurological and cardiac diseases. However, among neurological conditions, cardiac interoceptive deficits presented more undifferentiated and unspecific disturbances across dimensions. CONCLUSIONS: Our result suggests a diffuse pattern of interoceptive alterations across neurological conditions, highlighting their potential role as dimensional, transdiagnostic markers.


Assuntos
Interocepção , Metacognição , Adolescente , Idoso , Conscientização , Criança , Feminino , Coração , Frequência Cardíaca , Humanos , Aprendizagem , Pessoa de Meia-Idade
18.
Horm Behav ; 89: 176-188, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28167134

RESUMO

The enzyme aromatase, responsible for the conversion of C19 androgens to C18 estrogens, exists as two paralogue copies in teleost fish: Cyp19a1a mostly expressed in the gonads, referred as gonadal aromatase, and Cyp19a1b, mostly expressed in the brain, accordingly known as brain aromatase. The neural localization of Cyp19a1b is greatly contained within the social behavior network and mesolimbic reward system in fish, suggesting a strong role of estrogen synthesis in the regulation of social behavior. In this work we aimed to analyze the variation in cyp19a1b expression in brain and pituitary of males of a highly social cichlid, Cichlasoma dimerus (locally known as chanchita), and its relation with inter-individual variability in agonistic behavior in a communal social environment. We first characterized chanchita's cyp19a1b mRNA and deduced amino acid sequence, which showed a high degree of conservation when compared to other teleost brain aromatase sequences, and its tissue expression patterns. Within the brain, Cyp19a1b was solely detected at putative radial glial cells of the forebrain, close to the brain ventricles. We then studied the relative expression levels of cyp19a1b by Real Time PCR in the brain and pituitary of males of different social status, territorial vs. non-territorial, and its relationship with an index of agonistic behavior. We found that even though, brain aromatase expression did not differ between types of males, pituitary cyp19a1b expression levels positively correlated with the index of agonistic behavior. This suggests a novel role of the pituitary in the regulation of social behavior by local estrogen synthesis.


Assuntos
Comportamento Agonístico/fisiologia , Aromatase/genética , Encéfalo/fisiologia , Ciclídeos/genética , Dominação-Subordinação , Androgênios/fisiologia , Animais , Expressão Gênica , Masculino , RNA Mensageiro/genética , Meio Social , Territorialidade
19.
Brain ; 139(11): 3022-3040, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27679483

RESUMO

Recursive social decision-making requires the use of flexible, context-sensitive long-term strategies for negotiation. To succeed in social bargaining, participants' own perspectives must be dynamically integrated with those of interactors to maximize self-benefits and adapt to the other's preferences, respectively. This is a prerequisite to develop a successful long-term self-other integration strategy. While such form of strategic interaction is critical to social decision-making, little is known about its neurocognitive correlates. To bridge this gap, we analysed social bargaining behaviour in relation to its structural neural correlates, ongoing brain dynamics (oscillations and related source space), and functional connectivity signatures in healthy subjects and patients offering contrastive lesion models of neurodegeneration and focal stroke: behavioural variant frontotemporal dementia, Alzheimer's disease, and frontal lesions. All groups showed preserved basic bargaining indexes. However, impaired self-other integration strategy was found in patients with behavioural variant frontotemporal dementia and frontal lesions, suggesting that social bargaining critically depends on the integrity of prefrontal regions. Also, associations between behavioural performance and data from voxel-based morphometry and voxel-based lesion-symptom mapping revealed a critical role of prefrontal regions in value integration and strategic decisions for self-other integration strategy. Furthermore, as shown by measures of brain dynamics and related sources during the task, the self-other integration strategy was predicted by brain anticipatory activity (alpha/beta oscillations with sources in frontotemporal regions) associated with expectations about others' decisions. This pattern was reduced in all clinical groups, with greater impairments in behavioural variant frontotemporal dementia and frontal lesions than Alzheimer's disease. Finally, connectivity analysis from functional magnetic resonance imaging evidenced a fronto-temporo-parietal network involved in successful self-other integration strategy, with selective compromise of long-distance connections in frontal disorders. In sum, this work provides unprecedented evidence of convergent behavioural and neurocognitive signatures of strategic social bargaining in different lesion models. Our findings offer new insights into the critical roles of prefrontal hubs and associated temporo-parietal networks for strategic social negotiation.


Assuntos
Doença de Alzheimer/complicações , Doença de Alzheimer/psicologia , Transtornos Cognitivos/etiologia , Tomada de Decisões , Demência Frontotemporal/complicações , Demência Frontotemporal/psicologia , Comportamento Social , Adaptação Psicológica , Doença de Alzheimer/diagnóstico por imagem , Mapeamento Encefálico , Estudos de Casos e Controles , Transtornos Cognitivos/diagnóstico , Eletroencefalografia , Feminino , Demência Frontotemporal/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Vias Neurais/diagnóstico por imagem , Testes Neuropsicológicos , Fatores de Tempo
20.
Gen Comp Endocrinol ; 252: 119-129, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28797804

RESUMO

For many species parental behavior is essential for the survival of the offspring. While the ultimate causes of teleost parental behavior have been widely studied, comparatively little is known about its proximate causes. The aim of this study was to analyze the yet unexplored, potential dual role of brain and gonadal aromatases, the enzymes responsible for the conversion of androgens to estrogens in the brains and gonads of teleosts, respectively, on the different stages of the maternal care period of the biparental cichlid Cichlasoma dimerus, locally known as chanchita. By immunohistochemistry we analyzed the neural distribution of brain aromatase and observed it exclusively within the forebrain, including areas involved in the regulation of parental behavior. We next analyzed the gene expression of brain aromatase in the brain, and gonadal aromatase in the ovary, of female chanchitas through the parental care period. To further characterize the physiological environment associated to maternal care, we also evaluated sex steroid levels (17ß-estradiol, testosterone and 11-ketotestoterone) and ovarian follicle percentage. The onset of parental behavior specifically downregulated sex steroids synthesis and the rate of ovarian maturation, as denoted by a more than 10-fold decrease in steroid levels and delayed detection of mature follicles in females with offspring, compared to females which eggs were removed. Gene expression levels of both aromatases were independent of maternal care at the evaluated time points, even though they varied during the parental care period.


Assuntos
Aromatase/genética , Comportamento Animal , Encéfalo/enzimologia , Ciclídeos/genética , Regulação Enzimológica da Expressão Gênica , Ovário/enzimologia , Clima Tropical , Animais , Aromatase/metabolismo , Ciclídeos/sangue , Estradiol/sangue , Feminino , Fluorescência , Hormônios Esteroides Gonadais/sangue , Masculino , Ovário/anatomia & histologia , Reprodução , Testosterona/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA