Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(18): 4964-4980.e21, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39059380

RESUMO

The highly conserved and essential Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) has emerged as the leading target for vaccines against the disease-causing blood stage of malaria. However, the features of the human vaccine-induced antibody response that confer highly potent inhibition of malaria parasite invasion into red blood cells are not well defined. Here, we characterize 236 human IgG monoclonal antibodies, derived from 15 donors, induced by the most advanced PfRH5 vaccine. We define the antigenic landscape of this molecule and establish that epitope specificity, antibody association rate, and intra-PfRH5 antibody interactions are key determinants of functional anti-parasitic potency. In addition, we identify a germline IgG gene combination that results in an exceptionally potent class of antibody and demonstrate its prophylactic potential to protect against P. falciparum parasite challenge in vivo. This comprehensive dataset provides a framework to guide rational design of next-generation vaccines and prophylactic antibodies to protect against blood-stage malaria.


Assuntos
Anticorpos Monoclonais , Anticorpos Antiprotozoários , Antígenos de Protozoários , Imunoglobulina G , Vacinas Antimaláricas , Malária Falciparum , Plasmodium falciparum , Proteínas de Protozoários , Animais , Humanos , Camundongos , Anticorpos Monoclonais/imunologia , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Proteínas de Transporte/imunologia , Epitopos/imunologia , Eritrócitos/parasitologia , Eritrócitos/imunologia , Imunoglobulina G/imunologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Malária Falciparum/prevenção & controle , Malária Falciparum/parasitologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia
2.
Biochemistry ; 57(5): 516-519, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29323879

RESUMO

Malaria, one of the most common vector borne human diseases, is a major world health issue. In 2015 alone, more than 200 million people were infected with malaria, out of which, 429 000 died. Even though artemisinin-based combination therapies (ACT) are highly effective at treating malaria infections, novel efforts toward development of vaccines to prevent transmission are still needed. Pfs25, a postfertilization stage parasite surface antigen, is a leading transmission-blocking vaccine (TBV) candidate. It is postulated that Pfs25 anchors to the cell membrane using a glycosylphosphatidylinositol (GPI) linker, which itself possesses pro-inflammatory properties. In this study, Escherichia coli derived extract (XtractCF+TM) was used in cell free protein synthesis [CFPS] to successfully express >200 mg/L of recombinant Pfs25 with a C-terminal non-natural amino acid (nnAA), namely, p-azidomethyl phenylalanine (pAMF), which possesses a reactive azide group. Thereafter, a unique conjugate vaccine (CV), namely, Pfs25-GPI was generated with dibenzocyclooctyne (DBCO) derivatized glycan core of malaria GPI using a simple but highly efficient copper free click chemistry reaction. In mice immunized with Pfs25 or Pfs25-GPI, the Pfs25-GPI group showed significantly higher titers compared to the Pfs25 group. Moreover, only purified IgGs from Pfs25-GPI group were able to significantly block transmission of parasites to mosquitoes, as judged by a standard membrane feeding assay [SMFA]. To our knowledge, this is the first report of the generation of a CV using Pfs25 and malaria specific GPI where the GPI is shown to enhance the ability of Pfs25 to elicit transmission blocking antibodies.


Assuntos
Glicosilfosfatidilinositóis/uso terapêutico , Vacinas Antimaláricas/uso terapêutico , Malária Falciparum/prevenção & controle , Plasmodium falciparum/imunologia , Proteínas de Protozoários/uso terapêutico , Animais , Formação de Anticorpos , Glicosilfosfatidilinositóis/imunologia , Humanos , Imunização , Malária , Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Malária Falciparum/transmissão , Camundongos , Proteínas de Protozoários/imunologia , Vacinas Conjugadas/imunologia , Vacinas Conjugadas/uso terapêutico , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/uso terapêutico
3.
J Infect Dis ; 213(11): 1743-51, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26908756

RESUMO

BACKGROUND: Models of controlled human malaria infection (CHMI) initiated by mosquito bite have been widely used to assess efficacy of preerythrocytic vaccine candidates in small proof-of-concept phase 2a clinical trials. Efficacy testing of blood-stage malaria parasite vaccines, however, has generally relied on larger-scale phase 2b field trials in malaria-endemic populations. We report the use of a blood-stage P. falciparum CHMI model to assess blood-stage vaccine candidates, using their impact on the parasite multiplication rate (PMR) as the primary efficacy end point. METHODS: Fifteen healthy United Kingdom adult volunteers were vaccinated with FMP2.1, a protein vaccine that is based on the 3D7 clone sequence of apical membrane antigen 1 (AMA1) and formulated in Adjuvant System 01 (AS01). Twelve vaccinees and 15 infectivity controls subsequently underwent blood-stage CHMI. Parasitemia was monitored by quantitative real-time polymerase chain reaction (PCR) analysis, and PMR was modeled from these data. RESULTS: FMP2.1/AS01 elicited anti-AMA1 T-cell and serum antibody responses. Analysis of purified immunoglobulin G showed functional growth inhibitory activity against P. falciparum in vitro. There were no vaccine- or CHMI-related safety concerns. All volunteers developed blood-stage parasitemia, with no impact of the vaccine on PMR. CONCLUSIONS: FMP2.1/AS01 demonstrated no efficacy after blood-stage CHMI. However, the model induced highly reproducible infection in all volunteers and will accelerate proof-of-concept testing of future blood-stage vaccine candidates. CLINICAL TRIALS REGISTRATION: NCT02044198.


Assuntos
Antígenos de Protozoários/imunologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Proteínas de Membrana/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Adulto , ELISPOT , Eritrócitos/parasitologia , Feminino , Humanos , Imunogenicidade da Vacina , Estágios do Ciclo de Vida , Malária Falciparum/parasitologia , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Plasmodium falciparum/fisiologia , Adulto Jovem
4.
J Infect Dis ; 214(5): 762-71, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27296848

RESUMO

BACKGROUND: Three full doses of RTS,S/AS01 malaria vaccine provides partial protection against controlled human malaria parasite infection (CHMI) and natural exposure. Immunization regimens, including a delayed fractional third dose, were assessed for potential increased protection against malaria and immunologic responses. METHODS: In a phase 2a, controlled, open-label, study of healthy malaria-naive adults, 16 subjects vaccinated with a 0-, 1-, and 2-month full-dose regimen (012M) and 30 subjects who received a 0-, 1-, and 7-month regimen, including a fractional third dose (Fx017M), underwent CHMI 3 weeks after the last dose. Plasmablast heavy and light chain immunoglobulin messenger RNA sequencing and antibody avidity were evaluated. Protection against repeat CHMI was evaluated after 8 months. RESULTS: A total of 26 of 30 subjects in the Fx017M group (vaccine efficacy [VE], 86.7% [95% confidence interval [CI], 66.8%-94.6%]; P < .0001) and 10 of 16 in the 012M group (VE, 62.5% [95% CI, 29.4%-80.1%]; P = .0009) were protected against infection, and protection differed between schedules (P = .040, by the log rank test). The fractional dose boosting increased antibody somatic hypermutation and avidity and sustained high protection upon rechallenge. DISCUSSIONS: A delayed third fractional vaccine dose improved immunogenicity and protection against infection. Optimization of the RTS,S/AS01 immunization regimen may lead to improved approaches against malaria. CLINICAL TRIALS REGISTRATION: NCT01857869.


Assuntos
Esquemas de Imunização , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/imunologia , Malária/prevenção & controle , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia , Adolescente , Adulto , Anticorpos Antiprotozoários/biossíntese , Anticorpos Antiprotozoários/imunologia , Afinidade de Anticorpos , Feminino , Humanos , Cadeias Pesadas de Imunoglobulinas/biossíntese , Cadeias Leves de Imunoglobulina/biossíntese , Masculino , Pessoa de Meia-Idade , Adulto Jovem
5.
Nat Commun ; 15(1): 4857, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849365

RESUMO

Reticulocyte-binding protein homologue 5 (RH5), a leading blood-stage Plasmodium falciparum malaria vaccine target, interacts with cysteine-rich protective antigen (CyRPA) and RH5-interacting protein (RIPR) to form an essential heterotrimeric "RCR-complex". We investigate whether RCR-complex vaccination can improve upon RH5 alone. Using monoclonal antibodies (mAbs) we show that parasite growth-inhibitory epitopes on each antigen are surface-exposed on the RCR-complex and that mAb pairs targeting different antigens can function additively or synergistically. However, immunisation of female rats with the RCR-complex fails to outperform RH5 alone due to immuno-dominance of RIPR coupled with inferior potency of anti-RIPR polyclonal IgG. We identify that all growth-inhibitory antibody epitopes of RIPR cluster within the C-terminal EGF-like domains and that a fusion of these domains to CyRPA, called "R78C", combined with RH5, improves the level of in vitro parasite growth inhibition compared to RH5 alone. These preclinical data justify the advancement of the RH5.1 + R78C/Matrix-M™ vaccine candidate to Phase 1 clinical trial.


Assuntos
Anticorpos Monoclonais , Anticorpos Antiprotozoários , Antígenos de Protozoários , Vacinas Antimaláricas , Malária Falciparum , Plasmodium falciparum , Proteínas de Protozoários , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/administração & dosagem , Animais , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Feminino , Malária Falciparum/prevenção & controle , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Antígenos de Protozoários/imunologia , Ratos , Anticorpos Antiprotozoários/imunologia , Anticorpos Monoclonais/imunologia , Humanos , Epitopos/imunologia , Proteínas de Transporte/imunologia , Proteínas de Transporte/metabolismo
6.
Cell Rep Med ; 5(7): 101654, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39019011

RESUMO

Plasmodium falciparum reticulocyte-binding protein homolog 5 (RH5) is a leading blood-stage malaria vaccine antigen target, currently in a phase 2b clinical trial as a full-length soluble protein/adjuvant vaccine candidate called RH5.1/Matrix-M. We identify that disordered regions of the full-length RH5 molecule induce non-growth inhibitory antibodies in human vaccinees and that a re-engineered and stabilized immunogen (including just the alpha-helical core of RH5) induces a qualitatively superior growth inhibitory antibody response in rats vaccinated with this protein formulated in Matrix-M adjuvant. In parallel, bioconjugation of this immunogen, termed "RH5.2," to hepatitis B surface antigen virus-like particles (VLPs) using the "plug-and-display" SpyTag-SpyCatcher platform technology also enables superior quantitative antibody immunogenicity over soluble protein/adjuvant in vaccinated mice and rats. These studies identify a blood-stage malaria vaccine candidate that may improve upon the current leading soluble protein vaccine candidate RH5.1/Matrix-M. The RH5.2-VLP/Matrix-M vaccine candidate is now under evaluation in phase 1a/b clinical trials.


Assuntos
Anticorpos Antiprotozoários , Vacinas Antimaláricas , Plasmodium falciparum , Proteínas de Protozoários , Vacinas de Partículas Semelhantes a Vírus , Animais , Vacinas Antimaláricas/imunologia , Anticorpos Antiprotozoários/imunologia , Plasmodium falciparum/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Humanos , Camundongos , Proteínas de Protozoários/imunologia , Ratos , Malária Falciparum/prevenção & controle , Malária Falciparum/imunologia , Antígenos de Protozoários/imunologia , Feminino , Proteínas de Transporte/imunologia , Camundongos Endogâmicos BALB C
7.
Lancet Infect Dis ; 22(11): 1596-1605, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35963275

RESUMO

BACKGROUND: Malaria elimination requires interruption of the highly efficient transmission of Plasmodium parasites by mosquitoes. TB31F is a humanised monoclonal antibody that binds the gamete surface protein Pfs48/45 and inhibits fertilisation, thereby preventing further parasite development in the mosquito midgut and onward transmission. We aimed to evaluate the safety and efficacy of TB31F in malaria-naive participants. METHODS: In this open-label, first-in-human, dose-escalation, phase 1 clinical trial, healthy, malaria-naive, adult participants were administered a single intravenous dose of 0·1, 1, 3, or 10 mg/kg TB31F or a subcutaneous dose of 100 mg TB31F, and monitored until day 84 after administration at a single centre in the Netherlands. The primary outcome was the frequency and magnitude of adverse events. Additionally, TB31F serum concentrations were measured by ELISA. Transmission-reducing activity (TRA) of participant sera was assessed by standard membrane feeding assays with Anopheles stephensi mosquitoes and cultured Plasmodium falciparum gametocytes. The trial is registered with Clinicaltrials.gov, NCT04238689. FINDINGS: Between Feb 17 and Dec 10, 2020, 25 participants were enrolled and sequentially assigned to each dose (n=5 per group). No serious or severe adverse events occurred. In total, 33 grade 1 and six grade 2 related adverse events occurred in 20 (80%) of 25 participants across all groups. Serum of all participants administered 1 mg/kg, 3 mg/kg, or 10 mg/kg TB31F intravenously had more than 80% TRA for 28 days or more, 56 days or more, and 84 days or more, respectively. The TB31F serum concentration reaching 80% TRA was 2·1 µg/mL (95% CI 1·9-2·3). Extrapolating the duration of TRA from antibody kinetics suggests more than 80% TRA is maintained for 160 days (95% CI 136-193) following a single intravenous 10 mg/kg dose. INTERPRETATION: TB31F is a well tolerated and highly potent monoclonal antibody capable of completely blocking transmission of P falciparum parasites from humans to mosquitoes. In areas of seasonal transmission, a single dose might cover an entire malaria season. FUNDING: PATH's Malaria Vaccine Initiative.


Assuntos
Antimaláricos , Vacinas Antimaláricas , Malária Falciparum , Adulto , Animais , Humanos , Plasmodium falciparum , Anticorpos Monoclonais/uso terapêutico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/prevenção & controle , Malária Falciparum/parasitologia
8.
Hum Vaccin Immunother ; 16(1): 33-41, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31306084

RESUMO

Introduction: RTS,S/AS01 is currently the most advanced malaria vaccine but provides incomplete, short-term protection. It was developed for use within the expanded program on immunizations (EPI) for African children. Another use could be adding mass RTS,S/AS01 vaccination to the integrated malaria elimination strategy in the Greater Mekong Subregion (GMS), where multidrug-resistant P.falciparum strains have emerged and spread. Prior to evaluating RTS,S/AS01 in large-scale trials we assessed whether the vaccine, administered with and without antimalarial drugs, is safe and immunogenic in Asian populations.Methods: An open-label, randomized, controlled phase 2 trial was conducted in healthy, adult Thai volunteers. Seven vaccine regimens with and without antimalarial drugs (dihydroartemisinin-piperaquine plus a single low dose primaquine) were assessed. Antibody titres against the PfCSP full-length (NANP) 6, PfCSP anti-C-term, PfCSP full-length (N + C-Terminal) were measured by standard enzyme-linked immunosorbent assays. Liquid chromatography was used to measure piperaquine, primaquine and carboxy-primaquine concentrations.Results: 193 volunteers were enrolled and 186 study participants completed the 6 months follow-up period. One month after the last vaccination all study participants had seroconverted to the PfCSP (NANP)6, and the PfCSP Full Length (N + C-Terminal). More than 90% had seroconverted to the Pfanti-C-Term CSP. There was no indication that drug concentrations were influenced by vaccine regimens or the antibody levels by the drug regimens. Adverse events were similarly distributed between the seven treatment groups. No serious adverse events attributable to the study interventions were detected.Conclusion: This study found that RTS,S/AS01 with and without dihydroartemisinin-piperaquine plus a single low dose primaquine was safe and immunogenic in a healthy, adult Asian population.


Assuntos
Antimaláricos/administração & dosagem , Erradicação de Doenças , Imunogenicidade da Vacina , Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Adulto , Anticorpos Antiprotozoários/sangue , Antimaláricos/farmacocinética , Artemisininas/administração & dosagem , Quimioterapia Combinada , Feminino , Voluntários Saudáveis , Humanos , Programas de Imunização , Esquemas de Imunização , Vacinas Antimaláricas/administração & dosagem , Malária Falciparum/epidemiologia , Masculino , Primaquina/administração & dosagem , Quinolinas/administração & dosagem , Tailândia/epidemiologia , Vacinação
9.
Sci Transl Med ; 12(544)2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32434846

RESUMO

For some diseases, successful vaccines have been developed using a nonpathogenic counterpart of the causative microorganism of choice. The nonpathogenicity of the rodent Plasmodium berghei (Pb) parasite in humans prompted us to evaluate its potential as a platform for vaccination against human infection by Plasmodium falciparum (Pf), a causative agent of malaria. We hypothesized that the genetic insertion of a leading protein target for clinical development of a malaria vaccine, Pf circumsporozoite protein (CSP), in its natural pre-erythrocytic environment, would enhance Pb's capacity to induce protective immunity against Pf infection. Hence, we recently generated a transgenic Pb sporozoite immunization platform expressing PfCSP (PbVac), and we now report the clinical evaluation of its biological activity against controlled human malaria infection (CHMI). This first-in-human trial shows that PbVac is safe and well tolerated, when administered by a total of ~300 PbVac-infected mosquitoes per volunteer. Although protective efficacy evaluated by CHMI showed no sterile protection at the tested dose, significant delays in patency (2.2 days, P = 0.03) and decreased parasite density were observed after immunization, corresponding to an estimated 95% reduction in Pf liver parasite burden (confidence interval, 56 to 99%; P = 0.010). PbVac elicits dose-dependent cross-species cellular immune responses and functional PfCSP-dependent antibody responses that efficiently block Pf sporozoite invasion of liver cells in vitro. This study demonstrates that PbVac immunization elicits a marked biological effect, inhibiting a subsequent infection by the human Pf parasite, and establishes the clinical validation of a new paradigm in malaria vaccination.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Parasitos , Animais , Anticorpos Antiprotozoários , Imunização , Malária Falciparum/prevenção & controle , Plasmodium falciparum , Proteínas de Protozoários/genética , Roedores , Vacinação
10.
Infect Immun ; 75(12): 5819-26, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17908809

RESUMO

The search for an efficacious vaccine against malaria is ongoing, and it is now widely believed that to confer protection a vaccine must induce very strong cellular and humoral immunity concurrently. We studied the immune response in mice immunized with the recombinant viral vaccines fowlpox strain FP9 and modified virus Ankara (MVA), a protein vaccine (CV-1866), or a combination of the two; all vaccines express parts of the same preerythrocytic malaria antigen, the Plasmodium berghei circumsporozoite protein (CSP). Mice were then challenged with P. berghei sporozoites to determine the protective efficacies of different vaccine regimens. Two immunizations with the protein vaccine CV-1866, based on the hepatitis B core antigen particle, induced strong humoral immunity to the repeat region of CSP that was weakly protective against sporozoite challenge. Prime-boost with the viral vector vaccines, FP9 followed by MVA, induced strong T-cell immunity to the CD8+ epitope Pb9 and partially protected animals from challenge. Physically mixing CV-1866 with FP9 or MVA and then immunizing with the resultant combinations in a prime-boost regimen induced both cellular and humoral immunity and afforded substantially higher levels of protection (combination, 90%) than either vaccine alone (CV-1866, 12%; FP9/MVA, 37%). For diseases such as malaria in which different potent immune responses are required to protect against different stages, using combinations of partially effective vaccines may offer a more rapid route to achieving deployable levels of efficacy than individual vaccine strategies.


Assuntos
Vacinas Antimaláricas/imunologia , Malária/imunologia , Vacinas Virais/imunologia , Animais , Anopheles/parasitologia , Anticorpos Antiprotozoários/biossíntese , Anticorpos Antiprotozoários/imunologia , Afinidade de Anticorpos/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito B/imunologia , Feminino , Antígenos do Núcleo do Vírus da Hepatite B/genética , Antígenos do Núcleo do Vírus da Hepatite B/imunologia , Malária/parasitologia , Malária/prevenção & controle , Vacinas Antimaláricas/genética , Vacinas Antimaláricas/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Plasmodium berghei/imunologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Esporozoítos/imunologia , Células Th1/imunologia , Vacinas Combinadas/genética , Vacinas Combinadas/imunologia , Vacinas Combinadas/farmacologia , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/farmacologia , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/farmacologia , Vacinas Virais/genética , Vacinas Virais/farmacologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-28490535

RESUMO

Remarkable progress has been made in coordinated malaria control efforts with substantial reductions in malaria-associated deaths and morbidity achieved through mass administration of drugs and vector control measures including distribution of long-lasting insecticide-impregnated bednets and indoor residual spraying. However, emerging resistance poses a significant threat to the sustainability of these interventions. In this light, the malaria research community has been charged with the development of a highly efficacious vaccine to complement existing malaria elimination measures. As the past 40 years of investment in this goal attests, this is no small feat. The malaria parasite is a highly complex organism, exquisitely adapted for survival under hostile conditions within human and mosquito hosts. Here we review current vaccine strategies to accelerate elimination and the potential for novel and innovative approaches to vaccine design through a better understanding of the host-parasite interaction.


Assuntos
Vacinas Antimaláricas/uso terapêutico , Malária/prevenção & controle , Malária/transmissão , Animais , Humanos , Mosquitos Vetores/parasitologia , Vacinação
12.
Vaccine ; 34(26): 2915-2920, 2016 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-26993333

RESUMO

Despite recent progress in reducing deaths attributable to malaria, it continues to claim approximately 500,000 lives per year and is associated with approximately 200 million infections. New tools, including safe and effective vaccines, are needed to ensure that the gains of the last 15 years are leveraged toward achieving the ultimate goal of malaria parasite eradication. In 2015, the European Medicines Agency announced the adoption of a positive opinion for the malaria vaccine candidate most advanced in development, RTS,S/AS01, which provides modest protection against clinical malaria; in early 2016, WHO recommended large-scale pilot implementations of RTS,S in settings of moderate-to-high malaria transmission. In alignment with these advancements, the community goals and preferred product characteristics for next-generation vaccines have been updated to inform the development of vaccines that are highly efficacious in preventing clinical malaria, and those needed to accelerate parasite elimination. Next-generation vaccines, targeting all stages of the parasite lifecycle, are in early-stage development with the most advanced in Phase 2 trials. Importantly, progress is being made in the definition of feasible regulatory pathways to accelerate timelines, including for vaccines designed to interrupt transmission of parasites from humans to mosquitoes. The continued absence of financially lucrative, high-income markets to drive investment in malaria vaccine development points to continued heavy reliance on public and philanthropic funding.


Assuntos
Vacinas Antimaláricas/uso terapêutico , Malária/prevenção & controle , Animais , Pesquisa Biomédica/tendências , Ensaios Clínicos como Assunto , Culicidae/parasitologia , Humanos
14.
Vaccine ; 33(52): 7538-43, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26469721

RESUMO

Despite impressive gains over the last 15 years in reducing the mortality associated with malaria, it remains a public health emergency. New interventions, such as vaccines, are needed to ensure that previous gains serve as a foundation for future progress. Vaccines have the potential to prevent severe disease and death in those most vulnerable, and to accelerate elimination and eradication by breaking the cycle of parasite transmission. The pipeline is as healthy as it has ever been, with approaches targeting different stages of the parasite lifecycle using an array of technologies. This article reviews recent progress and reviews key considerations in the quest to develop products that are aligned with the unmet medical need.


Assuntos
Saúde Global , Vacinas Antimaláricas , Malária/prevenção & controle , Ensaios Clínicos como Assunto , Humanos , Vacinas Antimaláricas/imunologia
15.
Vaccine ; 32(43): 5531-9, 2014 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-25077422

RESUMO

New interventions are needed to reduce morbidity and mortality associated with malaria, as well as to accelerate elimination and eventual eradication. Interventions that can break the cycle of parasite transmission, and prevent its reintroduction, will be of particular importance in achieving the eradication goal. In this regard, vaccines that interrupt malaria transmission (VIMT) have been highlighted as an important intervention, including transmission-blocking vaccines that prevent human-to-mosquito transmission by targeting the sexual, sporogonic, or mosquito stages of the parasite (SSM-VIMT). While the significant potential of this vaccine approach has been appreciated for decades, the development and licensure pathways for vaccines that target transmission and the incidence of infection, as opposed to prevention of clinical malaria disease, remain ill-defined. This article describes the progress made in critical areas since 2010, highlights key challenges that remain, and outlines important next steps to maximize the potential for SSM-VIMTs to contribute to the broader malaria elimination and eradication objectives.


Assuntos
Pesquisa Biomédica/tendências , Vacinas Antimaláricas , Malária/prevenção & controle , Animais , Culicidae/parasitologia , Humanos , Insetos Vetores/parasitologia , Malária/transmissão
16.
Vaccine ; 31 Suppl 2: B233-43, 2013 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-23598488

RESUMO

While recent progress has been made in reducing malaria mortality with other interventions, vaccines are still urgently needed to further reduce the incidence of clinical disease, including during pregnancy, and to provide "herd protection" by blocking parasite transmission. The most clinically advanced candidate, RTS,S, is presently undergoing Phase 3 evaluation in young African children across 13 clinical sites in eight African countries. In the 12-month period following vaccination, RTS,S conferred approximately 50% protection from clinical Plasmodium falciparum disease in children aged 5-17 months, and approximately 30% protection in children aged 6-12 weeks when administered in conjunction with Expanded Program for Immunization (EPI) vaccines. The development of more highly efficacious vaccines to prevent clinical disease caused by both P. falciparum and Plasmodium vivax, as well as vaccines to support elimination efforts by inducing immunity that blocks malaria parasite transmission, are priorities. Some key barriers to malaria vaccine development include: a paucity of well-characterized target immunogens and an absence of clear correlates of protection to enable vaccine development targeting all stages of the P. falciparum and P. vivax lifecycles; a limited number of safe and effective delivery systems, including adjuvants, that induce potent, long-lived protective immunity, be it by antibody, CD4+, and/or CD8+ T cell responses; and, for vaccines designed to provide "herd protection" by targeting sexual stage and/or mosquito antigens, the lack of a clear clinical and regulatory pathway to licensure using non-traditional endpoints. Recommendations to overcome these, and other key challenges, are suggested in this document.


Assuntos
Pesquisa Biomédica/tendências , Vacinas Antimaláricas/uso terapêutico , Malária/prevenção & controle , África , Ensaios Clínicos Fase III como Assunto , Humanos , Plasmodium falciparum , Plasmodium vivax , Linfócitos T/imunologia
17.
Glob Public Health ; 7(9): 931-45, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22783872

RESUMO

Many new interventions are being created to address health problems of the developing world. However, many developing countries have fragile health systems and find it difficult to accommodate change. Consequently, it is essential that new interventions are well aligned with health systems and their users. Establishing target product profiles (TPPs) is a critical, early step towards tailoring interventions to suit both of these constituencies. Specific analyses can help identify and establish relevant TPP criteria such as optimal formulation, presentation and packaging. Clinical trials for a new intervention should be designed to address both TPP-specific questions and anticipated use of the intervention in target countries. Examples are provided from research on malaria vaccines that are also applicable to other new public health interventions.


Assuntos
Ensaios Clínicos como Assunto , Serviços de Saúde Comunitária/organização & administração , Países em Desenvolvimento , Planejamento em Saúde/organização & administração , Projetos de Pesquisa , Tomada de Decisões Gerenciais , Humanos , Programas de Imunização , Formulação de Políticas
18.
Vaccine ; 23(41): 4935-43, 2005 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-15998554

RESUMO

ICC-1132 is a malaria vaccine candidate based on a modified hepatitis B virus core particle (HBc) bearing putative protective epitopes from the circumsporozoite protein (CS) of Plasmodium falciparum. While the epitope carrier itself is immunogenic, its potency can be increased by formulation with adjuvants. As a prelude to Phase I clinical trials, rhesus macaques were immunised twice with GMP grade ICC--1132 in saline or formulated with the adjuvants Alhydrogel (Alhydrogel) or Montanide((R)) ISA 720 (Montanide). Both adjuvant formulations gave significant humoral responses after the first injection, with titres increasing further after the second dose. The Montanide formulation was the most immunogenic, but undesirable reactogenicity in the form of sterile abscesses was associated with higher dosage levels of ICC--1132. These side effects could be avoided with lower antigen load, or by formulation of the second dose in Alhydrogel. Such measures also reduced peak titres and longevity of antibodies against CS, demonstrating the delicate balance between immunogenicity and reactogenicity of new vaccine formulations.


Assuntos
Adjuvantes Imunológicos/farmacologia , Vacinas Antimaláricas/imunologia , Malária/prevenção & controle , Abscesso/patologia , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/efeitos adversos , Hidróxido de Alumínio/administração & dosagem , Hidróxido de Alumínio/efeitos adversos , Hidróxido de Alumínio/farmacologia , Animais , Anticorpos Antiprotozoários/sangue , Ensaio de Imunoadsorção Enzimática , Feminino , Vírus da Hepatite B/genética , Vírus da Hepatite B/imunologia , Imunoglobulina G/sangue , Macaca mulatta , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/efeitos adversos , Masculino , Manitol/administração & dosagem , Manitol/efeitos adversos , Manitol/análogos & derivados , Manitol/farmacologia , Modelos Animais , Ácidos Oleicos/administração & dosagem , Ácidos Oleicos/efeitos adversos , Ácidos Oleicos/farmacologia , Plasmodium falciparum , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/efeitos adversos , Vacinas Virais/imunologia
19.
Infect Immun ; 72(11): 6519-27, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15501783

RESUMO

We report the first phase I trial to assess the safety and immunogenicity of a malaria vaccine candidate, ICC-1132 (Malarivax), composed of a modified hepatitis B virus core protein (HBc) containing minimal epitopes of the Plasmodium falciparum circumsporozoite (CS) protein. When expressed in Escherichia coli, the recombinant ICC-1132 protein forms virus-like particles that were found to be highly immunogenic in preclinical studies of mice and monkeys. Twenty healthy adult volunteers received a 20- or a 50-microg dose of alum-adsorbed ICC-1132 administered intramuscularly at 0, 2, and 6 months. The majority of volunteers in the group receiving the 50-microg dose developed antibodies to CS repeats as well as to HBc. Malaria-specific T cells that secreted gamma interferon were also detected after a single immunization with ICC-1132-alum. These studies support ICC-1132 as a promising malaria vaccine candidate for further clinical testing using more-potent adjuvant formulations and confirm the potential of modified HBc virus-like particles as a delivery platform for vaccines against other human pathogens.


Assuntos
Antígenos do Núcleo do Vírus da Hepatite B/genética , Vacinas Antimaláricas/efeitos adversos , Vacinas Antimaláricas/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Adolescente , Adulto , Compostos de Alúmen , Sequência de Aminoácidos , Animais , Anticorpos Antiprotozoários/sangue , Método Duplo-Cego , Epitopos , Hepatite B/genética , Hepatite B/imunologia , Hepatite B/metabolismo , Antígenos do Núcleo do Vírus da Hepatite B/metabolismo , Humanos , Interferon gama/metabolismo , Vacinas Antimaláricas/administração & dosagem , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Malária Falciparum/prevenção & controle , Pessoa de Meia-Idade , Dados de Sequência Molecular , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Linfócitos T/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/efeitos adversos , Vacinas Sintéticas/imunologia , Vírion/genética , Vírion/imunologia , Vírion/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA