Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell ; 35(5): 1513-1531, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36747478

RESUMO

Plant roots possess remarkable regenerative potential owing to their ability to replenish damaged or lost stem cells. ETHYLENE RESPONSE FACTOR 115 (ERF115), one of the key molecular elements linked to this potential, plays a predominant role in the activation of regenerative cell divisions. However, the downstream operating molecular machinery driving wound-activated cell division is largely unknown. Here, we biochemically and genetically identified the GRAS-domain transcription factor SCARECROW-LIKE 5 (SCL5) as an interaction partner of ERF115 in Arabidopsis thaliana. Although nonessential under control growth conditions, SCL5 acts redundantly with the related PHYTOCHROME A SIGNAL TRANSDUCTION 1 (PAT1) and SCL21 transcription factors to activate the expression of the DNA-BINDING ONE FINGER 3.4 (DOF3.4) transcription factor gene. DOF3.4 expression is wound-inducible in an ERF115-dependent manner and, in turn, activates D3-type cyclin expression. Accordingly, ectopic DOF3.4 expression drives periclinal cell division, while its downstream D3-type cyclins are essential for the regeneration of a damaged root. Our data highlight the importance and redundant roles of the SCL5, SCL21, and PAT1 transcription factors in wound-activated regeneration processes and pinpoint DOF3.4 as a key downstream element driving regenerative cell division.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Fitocromo A/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Divisão Celular , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ciclinas/metabolismo , Transdução de Sinais/genética , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/genética
2.
J Exp Bot ; 72(19): 6789-6800, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34459899

RESUMO

Quiescent centre (QC) cells represent an integral part of the root stem cell niche. They typically display a low division frequency that has been reported to be controlled by hormone signaling and different regulators, including the ETHYLENE RESPONSE FACTOR 115 (ERF115) transcription factor and D-type cyclins. Here, we applied a three-dimensional (3D) imaging to visualize the Arabidopsis QC cell number, volume and division patterns, including visualization of anticlinal divisions that cannot be deduced from longitudinal 2D imaging. We found that 5-day-old seedlings possess on average eight QC cells which are organized in a monolayered disc. In a period of 7 d, half of the QC cells undergo anticlinal division in a largely invariant space. Ectopic expression of ERF115 and CYCLIN D1;1 (CYCD1;1) promote both anticlinal and periclinal QC cell divisions, the latter resulting in a dual-layered QC zone holding up to 2-fold more QC cells compared with the wild type. In contrast, application of cytokinin or ethylene results in an increase in the number of periclinal, but a decrease in anticlinal QC divisions, suggesting that they control the orientation of QC cell division. Our data illustrate the power of 3D visualization in revealing unexpected QC characteristics.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Divisão Celular , Meristema , Raízes de Plantas
3.
J Cell Sci ; 131(2)2018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-29242229

RESUMO

Plants react to wounding through the activation of both defense and repair pathways, but how these two responses are coordinated is unclear. Here, we put forward the hypothesis that diverse members of the subfamily X of the plant-specific ethylene response factor (ERF) transcription factors coordinate stress signaling with the activation of wound repair mechanisms. Moreover, we highlight the observation that tissue repair is strongly boosted through the formation of a heterodimeric protein complex that comprises ERF and transcription factors of the GRAS domain type. This interaction turns ERFs into highly potent and stress-responsive activators of cell proliferation. The potency to induce stem cell identity suggests that these heterodimeric transcription factor complexes could become valuable tools to increase crop regeneration and transformation efficiency.


Assuntos
Etilenos/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Fatores de Transcrição/metabolismo , Modelos Biológicos , Filogenia
4.
Plant Cell Environ ; 41(2): 374-382, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29143349

RESUMO

Research in maize is often performed using inbred lines that can be readily transformed, such as B104. However, because the B104 line flowers late, the kernels do not always mature before the end of the growing season, hampering routine seed yield evaluations of biotech traits introduced in B104 at many geographical locations. Therefore, we generated five hybrids by crossing B104 with the early-flowering inbred lines CML91, F7, H99, Mo17, and W153R and showed in three consecutive years that the hybrid lines proved to be suitable to evaluate seed yield under field conditions in a temperate climate. By assessing the two main processes driving maize leaf growth, being rate of growth (leaf elongation rate or LER) and the duration of growth (leaf elongation duration or LED) in this panel of hybrids, we showed that leaf growth heterosis was mainly the result of increased LER and not or to a lesser extent of LED. Ectopic expression of the transgenes GA20-oxidase (GA20-OX) and PLASTOCHRON1 (PLA1), known to stimulate the LER and LED, respectively, in the hybrids showed that leaf length heterosis can be stimulated by increased LER, but not by LED, indicating that LER rather than LED is the target for enhancing leaf growth heterosis.


Assuntos
Vigor Híbrido , Zea mays/crescimento & desenvolvimento , Vigor Híbrido/fisiologia , Melhoramento Vegetal , Folhas de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Zea mays/genética
5.
Nat Plants ; 10(1): 53-65, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38168607

RESUMO

The widespread use of plant grafting enables eudicots and gymnosperms to join with closely related species and grow as one. Gymnosperms have dominated forests for over 200 million years, and despite their economic and ecological relevance, we know little about how they graft. Here we developed a micrografting method in conifers using young tissues that allowed efficient grafting with closely related species and between distantly related genera. Conifer graft junctions rapidly connected vasculature and differentially expressed thousands of genes including auxin and cell-wall-related genes. By comparing these genes to those induced during Arabidopsis thaliana graft formation, we found a common activation of cambium, cell division, phloem and xylem-related genes. A gene regulatory network analysis in Norway spruce (Picea abies) predicted that PHYTOCHROME A SIGNAL TRANSDUCTION 1 (PAT1) acted as a core regulator of graft healing. This gene was strongly up-regulated during both spruce and Arabidopsis grafting, and Arabidopsis mutants lacking PAT genes failed to attach tissues or successfully graft. Complementing Arabidopsis PAT mutants with the spruce PAT1 homolog rescued tissue attachment and enhanced callus formation. Together, our data show an ability for young tissues to graft with distantly related species and identifies the PAT gene family as conserved regulators of graft healing and tissue regeneration.


Assuntos
Arabidopsis , Picea , Arabidopsis/genética , Picea/genética , Xilema , Ácidos Indolacéticos , Floema , Regulação da Expressão Gênica de Plantas
6.
Mol Plant ; 15(10): 1543-1557, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36030378

RESUMO

Plants show an unparalleled regenerative capacity, allowing them to survive severe stress conditions, such as injury, herbivory attack, and harsh weather conditions. This potential not only replenishes tissues and restores damaged organs but can also give rise to whole plant bodies. Despite the intertwined nature of development and regeneration, common upstream cues and signaling mechanisms are largely unknown. Here, we demonstrate that in addition to being activators of regeneration, ETHYLENE RESPONSE FACTOR 114 (ERF114) and ERF115 govern developmental growth in the absence of wounding or injury. Increased ERF114 and ERF115 activity enhances auxin sensitivity, which is correlated with enhanced xylem maturation and lateral root formation, whereas their knockout results in a decrease in lateral roots. Moreover, we provide evidence that mechanical cues contribute to ERF114 and ERF115 expression in correlation with BZR1-mediated brassinosteroid signaling under both regenerative and developmental conditions. Antagonistically, cell wall integrity surveillance via mechanosensory FERONIA signaling suppresses their expression under both conditions. Taken together, our data suggest a molecular framework in which cell wall signals and mechanical strains regulate organ development and regenerative responses via ERF114- and ERF115-mediated auxin signaling.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Sinais (Psicologia) , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Curr Biol ; 32(9): 1883-1894.e7, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35320706

RESUMO

Wound healing is a fundamental property of plants and animals that requires recognition of cellular damage to initiate regeneration. In plants, wounding activates a defense response via the production of jasmonic acid and a regeneration response via the hormone auxin and several ethylene response factor (ERF) and NAC domain-containing protein (ANAC) transcription factors. To better understand how plants recognize damage and initiate healing, we searched for factors upregulated during the horticulturally relevant process of plant grafting and found four related DNA binding with one finger (DOF) transcription factors, HIGH CAMBIAL ACTIVITY2 (HCA2), TARGET OF MONOPTEROS6 (TMO6), DOF2.1, and DOF6, whose expression rapidly activated at the Arabidopsis graft junction. Grafting or wounding a quadruple hca2, tmo6, dof2.1, dof6 mutant inhibited vascular and cell-wall-related gene expression. Furthermore, the quadruple dof mutant reduced callus formation, tissue attachment, vascular regeneration, and pectin methylesterification in response to wounding. We also found that activation of DOF gene expression after wounding required auxin, but hormone treatment alone was insufficient for their induction. However, modifying cell walls by enzymatic digestion of cellulose or pectin greatly enhanced TMO6 and HCA2 expression, whereas genetic modifications to the pectin or cellulose matrix using the PECTIN METHYLESTERASE INHIBITOR5 overexpression line or korrigan1 mutant altered TMO6 and HCA2 expression. Changes to the cellulose or pectin matrix were also sufficient to activate the wound-associated ERF115 and ANAC096 transcription factors, suggesting that cell-wall damage represents a common mechanism for wound perception and the promotion of tissue regeneration.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Celulose , Regulação da Expressão Gênica de Plantas , Hormônios/metabolismo , Ácidos Indolacéticos/metabolismo , Pectinas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Cicatrização
8.
Front Plant Sci ; 12: 656825, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34194448

RESUMO

Compared to other species, plants stand out by their unparalleled self-repair capacities. Being the loss of a single cell or an entire tissue, most plant species are able to efficiently repair the inflicted damage. Although this self-repair process is commonly referred to as "regeneration," depending on the type of damage and organ being affected, subtle to dramatic differences in the modus operandi can be observed. Recent publications have focused on these different types of tissue damage and their associated response in initiating the regeneration process. Here, we review the regeneration response following loss of a single cell to a complete organ, emphasizing key molecular players and hormonal cues involved in the model species Arabidopsis thaliana. In addition, we highlight the agricultural applications and techniques that make use of these regenerative responses in different crop and tree species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA