Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur Respir J ; 61(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36396144

RESUMO

RATIONALE: Severe viral respiratory infections are often characterised by extensive myeloid cell infiltration and activation and persistent lung tissue injury. However, the immunological mechanisms driving excessive inflammation in the lung remain poorly understood. OBJECTIVES: To identify the mechanisms that drive immune cell recruitment in the lung during viral respiratory infections and identify novel drug targets to reduce inflammation and disease severity. METHODS: Preclinical murine models of influenza A virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. RESULTS: Oxidised cholesterols and the oxysterol-sensing receptor GPR183 were identified as drivers of monocyte/macrophage infiltration to the lung during influenza A virus (IAV) and SARS-CoV-2 infection. Both IAV and SARS-CoV-2 infection upregulated the enzymes cholesterol 25-hydroxylase (CH25H) and cytochrome P450 family 7 subfamily member B1 (CYP7B1) in the lung, resulting in local production of the oxidised cholesterols 25-hydroxycholesterol (25-OHC) and 7α,25-dihydroxycholesterol (7α,25-OHC). Loss-of-function mutation of Gpr183 or treatment with a GPR183 antagonist reduced macrophage infiltration and inflammatory cytokine production in the lungs of IAV- or SARS-CoV-2-infected mice. The GPR183 antagonist significantly attenuated the severity of SARS-CoV-2 infection and viral loads. Analysis of single-cell RNA-sequencing data on bronchoalveolar lavage samples from healthy controls and COVID-19 patients with moderate and severe disease revealed that CH25H, CYP7B1 and GPR183 are significantly upregulated in macrophages during COVID-19. CONCLUSION: This study demonstrates that oxysterols drive inflammation in the lung via GPR183 and provides the first preclinical evidence for the therapeutic benefit of targeting GPR183 during severe viral respiratory infections.


Assuntos
COVID-19 , Influenza Humana , Animais , Camundongos , Humanos , SARS-CoV-2 , Macrófagos , Inflamação , Colesterol , Pulmão , Receptores Acoplados a Proteínas G
2.
J Immunol ; 202(10): 2982-2990, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30952817

RESUMO

Biliverdin reductase (BVR)-A is a pleotropic enzyme converting biliverdin to bilirubin and a signaling molecule that has cytoprotective and immunomodulatory effects. We recently showed that biliverdin inhibits the expression of complement activation fragment 5a receptor one (C5aR1) in RAW 264.7 macrophages. In this study, we investigated the role of BVR-A in determining macrophage inflammatory phenotype and function via regulation of C5aR1. We assessed expression of C5aR1, M1-like macrophage markers, including chemokines (RANTES, IP-10), as well as chemotaxis in response to LPS and C5a in bone marrow-derived macrophages from BVR fl/fl and LysM-Cre:BVR fl / fl mice (conditional deletion of BVR-A in myeloid cells). In response to LPS, macrophages isolated from LysM-Cre:BVR fl/fl showed significantly elevated levels of C5aR1 as well as chemokines (RANTES, IP10) but not proinflammatory markers, such as iNOS and TNF. An increase in C5aR1 expression was also observed in peritoneal macrophages and several tissues from LysM-Cre:BVR fl/fl mice in a model of endotoxemia. In addition, knockdown of BVR-A resulted in enhanced macrophage chemotaxis toward C5a. Part of the effects of BVR-A deletion on chemotaxis and RANTES expression were blocked in the presence of a C5aR1 neutralizing Ab, confirming the role of C5a-C5aR1 signaling in mediating the effects of BVR. In summary, BVR-A plays an important role in regulating macrophage chemotaxis in response to C5a via modulation of C5aR1 expression. In addition, macrophages lacking BVR-A are characterized by the expression of M1 polarization-associated chemokines, the levels of which depend in part on C5aR1 signaling.


Assuntos
Quimiocinas/imunologia , Quimiotaxia/imunologia , Complemento C5a/imunologia , Macrófagos/imunologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/imunologia , Receptor da Anafilatoxina C5a/imunologia , Transdução de Sinais/imunologia , Animais , Quimiocinas/genética , Quimiotaxia/genética , Complemento C5a/genética , Deleção de Genes , Macrófagos/citologia , Camundongos , Camundongos Transgênicos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Receptor da Anafilatoxina C5a/genética , Transdução de Sinais/genética
3.
Respir Res ; 19(1): 231, 2018 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-30466423

RESUMO

BACKGROUND: Sepsis is a multi-system syndrome that remains the leading cause of mortality and critical illness worldwide, with hemodynamic support being one of the cornerstones of the acute management of sepsis. We used an ovine model of endotoxemic shock to determine if 0.9% saline resuscitation contributes to lung inflammation and injury in acute respiratory distress syndrome, which is a common complication of sepsis, and investigated the potential role of matrix metalloproteinases in this process. METHODS: Endotoxemic shock was induced in sheep by administration of an escalating dose of lipopolysaccharide, after which they subsequently received either no fluid bolus resuscitation or a 0.9% saline bolus. Lung tissue, bronchoalveolar fluid (BAL) and plasma were analysed by real-time PCR, ELISA, flow cytometry and immunohistochemical staining to assess inflammatory cells, cytokines, hyaluronan and matrix metalloproteinases. RESULTS: Endotoxemia was associated with decreased serum albumin and total protein levels, with activated neutrophils, while the glycocalyx glycosaminoglycan hyaluronan was significantly increased in BAL. Quantitative real-time PCR studies showed higher expression of IL-6 and IL-8 with saline resuscitation but no difference in matrix metalloproteinase expression. BAL and tissue homogenate levels of IL-6, IL-8 and IL-1ß were elevated. CONCLUSIONS: This data shows that the inflammatory response is enhanced when a host with endotoxemia is resuscitated with saline, with a comparatively higher release of inflammatory cytokines and endothelial/glycocalyx damage, but no change in matrix metalloproteinase levels.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Endotoxemia/metabolismo , Mediadores da Inflamação/metabolismo , Ressuscitação/métodos , Choque/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Animais , Líquido da Lavagem Broncoalveolar , Endotoxemia/induzido quimicamente , Endotoxemia/terapia , Inflamação/induzido quimicamente , Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Ovinos , Choque/induzido quimicamente , Choque/terapia
4.
Biochem Biophys Res Commun ; 449(1): 94-9, 2014 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-24814708

RESUMO

Macrophages play a crucial role in the maintenance and resolution of inflammation and express a number of pro- and anti-inflammatory molecules in response to stressors. Among them, the complement receptor 5a (C5aR) plays an integral role in the development of inflammatory disorders. Biliverdin and bilirubin, products of heme catabolism, exert anti-inflammatory effects and inhibit complement activation. Here, we define the effects of biliverdin on C5aR expression in macrophages and the roles of Akt and mammalian target of rapamycin (mTOR) in these responses. Biliverdin administration inhibited lipopolysaccharide (LPS)-induced C5aR expression (without altering basal expression), an effect partially blocked by rapamycin, an inhibitor of mTOR signaling. Biliverdin also reduced LPS-dependent expression of the pro-inflammatory cytokines TNF-α and IL-6. Collectively, these data indicate that biliverdin regulates LPS-mediated expression of C5aR via the mTOR pathway, revealing an additional mechanism underlying biliverdin's anti-inflammatory effects.


Assuntos
Biliverdina/farmacologia , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/fisiologia , Macrófagos/metabolismo , Receptor da Anafilatoxina C5a/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Antioxidantes/farmacologia , Linhagem Celular , Endotoxinas/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Camundongos , Receptor da Anafilatoxina C5a/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
5.
Methods Mol Biol ; 2635: 43-61, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37074656

RESUMO

The erythroblastic island (EBI) is a multicellular functional erythropoietic unit comprising a central macrophage nurturing a rosette of maturing erythroblasts. Since the discovery of EBIs more than half a century ago, EBIs are still studied by traditional microscopy methods after enrichment by sedimentation. These isolation methods are not quantitative and do not enable precise quantification of EBI numbers or frequency in the bone marrow or spleen tissues. Conventional flow cytometric methods have enabled quantification of cell aggregates co-expressing macrophage and erythroblast markers; however, it is unknown whether these aggregates contain EBIs as these aggregates cannot be visually assessed for EBI content. Combining the strengths of both microscopy and flow cytometry methods, in this chapter we describe an imaging flow cytometry method to analyze and quantitatively measure EBIs from the mouse bone marrow. This method is adaptable to other tissues such as the spleen or to other species provided that fluorescent antibodies specific to macrophages and erythroblasts are available.


Assuntos
Medula Óssea , Eritroblastos , Camundongos , Animais , Citometria de Fluxo , Macrófagos , Eritropoese
6.
J Bone Miner Res ; 38(11): 1700-1717, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37602772

RESUMO

Neurogenic heterotopic ossifications (NHO) are heterotopic bones that develop in periarticular muscles after severe central nervous system (CNS) injuries. Several retrospective studies have shown that NHO prevalence is higher in patients who suffer concomitant infections. However, it is unclear whether these infections directly contribute to NHO development or reflect the immunodepression observed in patients with CNS injury. Using our mouse model of NHO induced by spinal cord injury (SCI) between vertebrae T11 to T13 , we demonstrate that lipopolysaccharides (LPS) from gram-negative bacteria exacerbate NHO development in a toll-like receptor-4 (TLR4)-dependent manner, signaling through the TIR-domain-containing adapter-inducing interferon-ß (TRIF/TICAM1) adaptor rather than the myeloid differentiation primary response-88 (MYD88) adaptor. We find that T11 to T13 SCI did not significantly alter intestinal integrity nor cause intestinal bacteria translocation or endotoxemia, suggesting that NHO development is not driven by endotoxins from the gut in this model of SCI-induced NHO. Relevant to the human pathology, LPS increased expression of osteoblast markers in cultures of human fibro-adipogenic progenitors isolated from muscles surrounding NHO biopsies. In a case-control retrospective study in patients with traumatic brain injuries, infections with gram-negative Pseudomonas species were significantly associated with NHO development. Together these data suggest a functional association between gram-negative bacterial infections and NHO development and highlights infection management as a key consideration to avoid NHO development in patients. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Assuntos
Ossificação Heterotópica , Traumatismos da Medula Espinal , Camundongos , Animais , Humanos , Lipopolissacarídeos/farmacologia , Estudos Retrospectivos , Traumatismos da Medula Espinal/complicações , Ossificação Heterotópica/patologia , Bactérias , Minerais
7.
Leukemia ; 36(2): 333-347, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34518644

RESUMO

We show that pro-inflammatory oncostatin M (OSM) is an important regulator of hematopoietic stem cell (HSC) niches in the bone marrow (BM). Treatment of healthy humans and mice with granulocyte colony-stimulating factor (G-CSF) dramatically increases OSM release in blood and BM. Using mice null for the OSM receptor (OSMR) gene, we demonstrate that OSM provides a negative feed-back acting as a brake on HSPC mobilization in response to clinically relevant mobilizing molecules G-CSF and CXCR4 antagonist. Likewise, injection of a recombinant OSM molecular trap made of OSMR complex extracellular domains enhances HSC mobilization in poor mobilizing C57BL/6 and NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ mice. Mechanistically, OSM attenuates HSC chemotactic response to CXCL12 and increases HSC homing to the BM signaling indirectly via BM endothelial and mesenchymal cells which are the only cells expressing OSMR in the BM. OSM up-regulates E-selectin expression on BM endothelial cells indirectly increasing HSC proliferation. RNA sequencing of HSCs from Osmr-/- and wild-type mice suggest that HSCs have altered cytoskeleton reorganization, energy usage and cycling in the absence of OSM signaling in niches. Therefore OSM is an important regulator of HSC niche function restraining HSC mobilization and anti-OSM therapy combined with current mobilizing regimens may improve HSPC mobilization for transplantation.


Assuntos
Medula Óssea/fisiologia , Fator Estimulador de Colônias de Granulócitos/administração & dosagem , Mobilização de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/citologia , Oncostatina M/metabolismo , Nicho de Células-Tronco , Animais , Medula Óssea/efeitos dos fármacos , Feminino , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD
8.
Exp Hematol ; 100: 12-31.e1, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34298116

RESUMO

The bone marrow (BM) contains a mosaic of niches specialized in supporting different maturity stages of hematopoietic stem and progenitor cells such as hematopoietic stem cells and myeloid, lymphoid, and erythroid progenitors. Recent advances in BM imaging and conditional gene knockout mice have revealed that niches are a complex network of cells of mesenchymal, endothelial, neuronal, and hematopoietic origins, together with local physicochemical parameters. Within these complex structures, phagocytes, such as neutrophils, macrophages, and dendritic cells, all of which are of hematopoietic origin, have been found to be important in regulating several niches in the BM, including hematopoietic stem cell niches, erythropoietic niches, and niches involved in endosteal bone formation. There is also increasing evidence that these macrophages have an important role in adapting hematopoiesis, erythropoiesis, and bone formation in response to inflammatory stressors and play a key part in maintaining the integrity and function of these. Likewise, there is also accumulating evidence that subsets of monocytes, macrophages, and other phagocytes contribute to the progression and response to treatment of several lymphoid malignancies such as multiple myeloma, Hodgkin lymphoma, and non-Hodgkin lymphoma, as well as lymphoblastic leukemia, and may also play a role in myelodysplastic syndrome and myeloproliferative neoplasms associated with Noonan syndrome and aplastic anemia. In this review, the potential functions of macrophages and other phagocytes in normal and pathologic niches are discussed, as are the challenges in studying BM and other tissue-resident macrophages at the molecular level.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas/patologia , Macrófagos/patologia , Fagócitos/patologia , Animais , Medula Óssea/patologia , Células-Tronco Hematopoéticas/citologia , Humanos , Linfoma/patologia , Macrófagos/citologia , Mieloma Múltiplo/patologia , Fagócitos/citologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia
9.
Exp Hematol ; 103: 1-14, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34500024

RESUMO

It has recently emerged that tissue-resident macrophages are key regulators of several stem cell niches orchestrating tissue formation during development, as well as postnatally, when they also organize the repair and regeneration of many tissues including the hemopoietic tissue. The fact that macrophages are also master regulators and effectors of innate immunity and inflammation allows them to coordinate hematopoietic response to infections, injuries, and inflammation. After recently reviewing the roles of phagocytes and macrophages in regulating normal and pathologic hematopoietic stem cell niches, we now focus on the key roles of macrophages in regulating erythropoiesis and iron homeostasis. We review herein the recent advances in understanding how macrophages at the center of erythroblastic islands form an erythropoietic niche that controls the terminal differentiation and maturation of erythroblasts into reticulocytes; how red pulp macrophages in the spleen control iron recycling and homeostasis; how these macrophages coordinate emergency erythropoiesis in response to blood loss, infections, and inflammation; and how persistent infections or inflammation can lead to anemia of inflammation via macrophages. Finally, we discuss the technical challenges associated with the molecular characterization of erythroid island macrophages and red pulp macrophages.


Assuntos
Eritropoese , Inflamação/imunologia , Ferro/imunologia , Macrófagos/imunologia , Infecção Persistente/imunologia , Anemia/imunologia , Animais , Eritroblastos/imunologia , Humanos , Nicho de Células-Tronco
10.
Front Immunol ; 11: 583550, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33123170

RESUMO

Anemia of inflammation (AI) is the second most prevalent anemia after iron deficiency anemia and results in persistent low blood erythrocytes and hemoglobin, fatigue, weakness, and early death. Anemia of inflammation is common in people with chronic inflammation, chronic infections, or sepsis. Although several studies have reported the effect of inflammation on stress erythropoiesis and iron homeostasis, the mechanisms by which inflammation suppresses erythropoiesis in the bone marrow (BM), where differentiation and maturation of erythroid cells from hematopoietic stem cells (HSCs) occurs, have not been extensively studied. Here we show that in a mouse model of acute sepsis, bacterial lipopolysaccharides (LPS) suppress medullary erythroblastic islands (EBIs) and erythropoiesis in a TLR-4- and MyD88-dependent manner with concomitant mobilization of HSCs. LPS suppressive effect on erythropoiesis is indirect as erythroid progenitors and erythroblasts do not express TLR-4 whereas EBI macrophages do. Using cytokine receptor gene knock-out mice LPS-induced mobilization of HSCs is G-CSF-dependent whereas LPS-induced suppression of medullary erythropoiesis does not require G- CSF-, IL- 1-, or TNF-mediated signaling. Therefore suppression of medullary erythropoiesis and mobilization of HSCs in response to LPS are mechanistically distinct. Our findings also suggest that EBI macrophages in the BM may sense innate immune stimuli in response to acute inflammation or infections to rapidly convert to a pro-inflammatory function at the expense of their erythropoietic function.


Assuntos
Anemia/imunologia , Medula Óssea/imunologia , Eritropoese/imunologia , Macrófagos/imunologia , Sepse/complicações , Animais , Fator Estimulador de Colônias de Granulócitos , Interleucina-1 , Lipopolissacarídeos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Sepse/imunologia , Fator de Necrose Tumoral alfa
11.
Exp Hematol ; 82: 33-42, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32045657

RESUMO

The erythroblastic island (EBI) is a multicellular structure forming an erythropoietic niche consisting of a central macrophage surrounded by a rosette of maturing erythroblasts. Since their discovery more than 60 years ago, simultaneous quantification and visualization of EBIs remain difficult. Although flow cytometry enables high-throughput quantification of cell aggregates co-expressing macrophage and erythroblast markers, it cannot visually confirm whether the aggregates are genuine EBIs. While immunofluorescence microscopy allows visualization of EBIs, its low throughput limits its use for quantification. In the current study we employed nine-channel imaging flow cytometry (IFC) to develop a method to directly visualize and quantify EBIs in the mouse bone marrow. We found that EBI central macrophages do express F4/80, VCAM-1, and CD169, but not CD11b or Ly6G, and that CD11b+Ly6G+F4/80- granulocytes are found associated at the periphery of 40%-60% EBIs. Furthermore, we show for the first time using IFC that in vivo treatment with the hematopoietic stem cell-mobilizing cytokine granulocyte colony-stimulating factor (G-CSF) reduced EBI frequency in the bone marrow by more than 100-fold. These results indicate that mobilizing doses of G-CSF cause a collapse of EBIs in the bone marrow.


Assuntos
Medula Óssea/metabolismo , Eritroblastos , Citometria de Fluxo , Fator Estimulador de Colônias de Granulócitos/farmacologia , Granulócitos , Macrófagos , Animais , Antígenos de Diferenciação/biossíntese , Eritroblastos/citologia , Eritroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Granulócitos/citologia , Granulócitos/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos
12.
Biochem Biophys Res Commun ; 379(2): 632-6, 2009 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-19121625

RESUMO

Present study was performed to assess the effect of curcumin treatment on macrophage functions using RAW264.7 cells, a murine macrophage cell line. Phagocytic activity of RAW264.7 cells was enhanced by the treatment with curcumin for 48 hours while the nitric oxide synthesis from RAW264.7 cells following lipopolysaccharide exposure was blocked. The incubation of RAW264.7 cells with curcumin dose-dependently inhibited the stimulatory responses of macrophage triggered by lipopolysaccharide; the enhanced secretion of inflammatory cytokines such as TNF-alpha and IL-1beta and the up-regulated expression of surface antigens like CD14 and CD40. Curcumin alone, however, was able to increase the basal level of TNF-alpha secretion and elevated markedly the expression of CD14 and slightly CD40. The marked enhancement of both phagocytic activity and CD14 was detectable as early as 75min after curcumin treatment which is the minimum time period required for the phagocytosis and CD14 measurement, suggesting a signaling pathway distinct from that triggered by apoptotic cells. In conclusion, this study elucidates that curcumin treatment enhances the phagocytic activity with blocking nitric oxide synthesis, a scavenger function of macrophages in non-inflammatory condition. In addition, this enhancement of phagocytic activity is triggered directly by the signals from curcumin itself not by apoptotic cells.


Assuntos
Curcumina/farmacologia , Macrófagos/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Animais , Antígenos CD40/biossíntese , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/imunologia , Inflamação/imunologia , Interleucina-1beta/biossíntese , Receptores de Lipopolissacarídeos/biossíntese , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Camundongos , Fator de Necrose Tumoral alfa/biossíntese
13.
Blood Adv ; 3(3): 406-418, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30733301

RESUMO

In normoxia, hypoxia-inducible transcription factors (HIFs) are rapidly degraded within the cytoplasm as a consequence of their prolyl hydroxylation by oxygen-dependent prolyl hydroxylase domain (PHD) enzymes. We have previously shown that hematopoietic stem and progenitor cells (HSPCs) require HIF-1 for effective mobilization in response to granulocyte colony-stimulating factor (G-CSF) and CXCR4 antagonist AMD3100/plerixafor. Conversely, HIF PHD inhibitors that stabilize HIF-1 protein in vivo enhance HSPC mobilization in response to G-CSF or AMD3100 in a cell-intrinsic manner. We now show that extrinsic mechanisms involving vascular endothelial growth factor receptor-2 (VEGFR2), via bone marrow (BM) endothelial cells, are also at play. PTK787/vatalanib, a tyrosine kinase inhibitor selective for VEGFR1 and VEGFR2, and neutralizing anti-VEGFR2 monoclonal antibody DC101 blocked enhancement of HSPC mobilization by FG-4497. VEGFR2 was absent on mesenchymal and hematopoietic cells and was detected only in Sca1+ endothelial cells in the BM. We propose that HIF PHD inhibitor FG-4497 enhances HSPC mobilization by stabilizing HIF-1α in HSPCs as previously demonstrated, as well as by activating VEGFR2 signaling in BM endothelial cells, which facilitates HSPC egress from the BM into the circulation.


Assuntos
Mobilização de Células-Tronco Hematopoéticas/métodos , Isoquinolinas/farmacologia , Inibidores de Prolil-Hidrolase/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ftalazinas/farmacologia , Piridinas/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
14.
J Neurotrauma ; 34(1): 137-144, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27302851

RESUMO

Augmented renal clearance (ARC) is being increasingly described in neurocritical care practice. The mechanisms driving this phenomenon are largely unknown. The aim of this project was therefore to explore changes in renal function, cardiac output (CO), and atrial natriuretic peptide (ANP) concentrations in patients with isolated traumatic brain injury (TBI). This prospective observational cohort study was conducted in a tertiary-level, university-affiliated intensive care unit (ICU). Patients with normal plasma creatinine concentrations (<120 µmol/L) at admission and no history of chronic kidney disease, admitted with isolated TBI, were eligible for enrollment. Continuous CO measures were obtained using arterial pulse waveform analysis. Eight-hour urinary creatinine clearances (CLCR) were used to quantify renal function. ANP concentrations in plasma were measured on alternate days. Data were collected from study enrollment until ICU discharge, death, or day 15, which ever came first. Eleven patients, contributing 100 ICU days of physiological data, were enrolled into the study. Most participants were young men, requiring mechanical ventilation. Median ICU length of stay was 9.6 [7.8-13.0] days. Elevated CLCR measures (>150 mL/min) were frequent and appeared to parallel changes in CO. Plasma ANP concentrations were also significantly elevated over the study period (minimum value = 243 pg/mL). These data suggest that ARC is likely to complicate the care of TBI patients with normal plasma creatinine concentrations, and may be driven by associated cardiovascular changes and/or elevated plasma ANP concentrations. However, significant additional research is required to further understand these findings.


Assuntos
Fator Natriurético Atrial/sangue , Lesões Encefálicas Traumáticas/sangue , Débito Cardíaco/fisiologia , Creatinina/sangue , Rim/metabolismo , Taxa de Depuração Metabólica/fisiologia , Adulto , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/fisiopatologia , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Adulto Jovem
15.
Oncotarget ; 7(17): 23919-32, 2016 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-26993595

RESUMO

We hypothesized that tumor-associated macrophages (TAMs) are controlled by the diffusible gas carbon monoxide (CO). We demonstrate that induction of apoptosis in lung tumors treated with low doses of CO is associated with increased CD86 expression and activation of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinases (Erk) 1/2 pathway in tumor microenvironment. Presence of CD86-positive cells was required for the anti-tumoral effects of CO in established A549 xenografts. We show that the effects of CO on tumor stroma and reprogramming of macrophages towards the anti-tumoral phenotype is mediated by reactive oxygen species (ROS)-dependent activation of MAPK/Erk1/2-c-myc pathway as well as Notch 1-dependent negative feedback on the metabolic enzyme heme oxygenase-1 (HO-1). We find a similar negative correlation between HO-1 and active MAPK-Erk1/2 levels in human lung cancer specimens.In summary, we describe novel non-cell autonomous mechanisms by which the diffusible gas CO dictates changes in the tumor microenvironment through the modulation of macrophages.


Assuntos
Biomarcadores Tumorais/metabolismo , Monóxido de Carbono/farmacologia , Neoplasias Pulmonares/patologia , Microambiente Tumoral/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Antígeno B7-2/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Heme Oxigenase-1/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
16.
J Clin Cell Immunol ; 5(218): 1000218, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-25177524

RESUMO

Sepsis is associated with abnormal host immune function in response to pathogen exposure, including endotoxin (lipopolysaccharide; LPS). Cytokines play crucial roles in the induction and resolution of inflammation in sepsis. Therefore, the primary aim of this study was to investigate the effects of endogenous tetrapyrroles, including biliverdin (BV) and unconjugated bilirubin (UCB) on LPS-induced cytokines in human blood. Biliverdin and UCB are by products of haem catabolism and have strong cytoprotective, antioxidant and anti-inflammatory effects. In the present study, whole human blood supplemented with BV and without was incubated in the presence or absence of LPS for 4 and 8 hours. Thereafter, whole blood was analysed for gene and protein expression of cytokines, including IL-1ß, IL-6, TNF, IFN-γ, IL-1Ra and IL-8. Biliverdin (50 µM) significantly decreased the LPS-mediated gene expression of IL-1ß, IL-6, IFN-γ, IL-1Ra and IL-8 (P<0.05). Furthermore, BV significantly decreased LPS-induced secretion of IL-1ß and IL-8 (P<0.05). Serum samples from human subjects and, wild type and hyperbilirubinaemic Gunn rats were also used to assess the relationship between circulating bilirubin and cytokine expression/production. Significant positive correlations between baseline UCB concentrations in human blood and LPS-mediated gene expression of IL-1ß (R=0.929), IFN-γ (R=0.809), IL-1Ra (R=0.786) and IL-8 (R=0.857) were observed in blood samples (all P<0.05). These data were supported by increased baseline IL-1ß concentrations in hyperbilirubinaemic Gunn rats (P<0.05). Blood samples were also investigated for complement receptor-5 (C5aR) expression. Stimulation of blood with LPS decreased gene expression of C5aR (P<0.05). Treatment of blood with BV alone and in the presence of LPS tended to decrease C5aR expression (P=0.08). These data indicate that supplemented BV inhibits the ex vivo response of human blood to LPS. Surprisingly, however, baseline UCB was associated with heighted inflammatory response to LPS. This is the first study to explore the effects of BV in a preclinical human model of inflammation and suggests that BV could represent an anti-inflammatory target for the prevention of LPS mediated inflammation in vivo.

17.
Free Radic Biol Med ; 52(10): 2120-7, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22521902

RESUMO

A protective association between bilirubin and atherosclerosis/ischemic heart disease clearly exists in vivo. However, the relationship between bilirubin and in vivo oxidative stress parameters in a clinical population remains poorly described. The aim of this study was to assess whether persons expressing Gilbert syndrome (GS; i.e., unconjugated hyperbilirubinemia) are protected from thiol oxidation and to determine if this, in addition to their improved lipoprotein profile, could explain reduced oxidized low-density lipoprotein (oxLDL) status in them. Forty-four matched GS and control subjects were recruited and blood was prepared for the analysis of lipid profile and multiple plasma antioxidants and measures of oxidative stress. GS subjects possessed elevated plasma reduced thiol (8.03±1.09 versus 6.75±1.39 nmol/mg protein; P<0.01) and glutathione concentrations (12.7±2.39 versus 9.44±2.45 µM; P<0.001). Oxidative stress status (reduced:oxidized glutathione; GSH:GSSG) was significantly improved in GS (0.49±0.16 versus 0.32±0.12; P<0.001). Protein carbonyl concentrations were negatively associated with bilirubin concentrations and were significantly lower in persons with >40 µM bilirubin versus controls (<17.1 µmol/L; P<0.05). Furthermore, absolute oxLDL concentrations were significantly lower in GS subjects (P<0.05). Forward stepwise regression analysis revealed that bilirubin was associated with increased GSH:GSSG ratio and reduced thiol concentrations, which, in addition to reduced circulating LDL, probably decreased oxLDL concentrations within the cohort. In addition, a marked reduction in total cholesterol concentrations in hyperbilirubinemic Gunn rats is presented (Gunn 0.57±0.09 versus control 1.69±0.40 mmol/L; P<0.001), arguing for a novel role for bilirubin in modulating lipid status in vivo. These findings implicate the physiological importance of bilirubin in protecting from atherosclerosis by reducing thiol and subsequent lipoprotein oxidation, in addition to reducing circulating LDL concentrations.


Assuntos
Bilirrubina/sangue , Colesterol/sangue , Doença de Gilbert/metabolismo , Lipoproteínas LDL/sangue , Compostos de Sulfidrila/metabolismo , Adolescente , Adulto , Animais , Antioxidantes/análise , Aterosclerose/metabolismo , Aterosclerose/patologia , Bilirrubina/biossíntese , Estudos de Coortes , Feminino , Glutationa/sangue , Humanos , Lipídeos/sangue , Lipoproteínas LDL/metabolismo , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo , Ratos , Adulto Jovem
18.
Toxicology ; 278(1): 88-100, 2010 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-19903510

RESUMO

Numerous dietary compounds, ubiquitous in fruits, vegetables and spices have been isolated and evaluated during recent years for their therapeutic potential. These compounds include flavonoid and non-flavonoid polyphenols, which describe beneficial effects against a variety of ailments. The notion that these plant products have health promoting effects emerged because their intake was related to a reduced incidence of cancer, cardiovascular, neurological, respiratory, and age-related diseases. Exposure of the body to a stressful environment challenges cell survival and increases the risk of chronic disease developing. The polyphenols afford protection against various stress-induced toxicities through modulating intercellular cascades which inhibit inflammatory molecule synthesis, the formation of free radicals, nuclear damage and induce antioxidant enzyme expression. These responses have the potential to increase life expectancy. The present review article focuses on curcumin, resveratrol, and flavonoids and seeks to summarize their anti-inflammatory, cytoprotective and DNA-protective properties.


Assuntos
Anti-Inflamatórios/farmacologia , Curcumina/farmacologia , Flavonoides/farmacologia , Estilbenos/farmacologia , Animais , Citoproteção , Dano ao DNA/efeitos dos fármacos , Humanos , Resveratrol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA